期刊文献+

CEV过程下比例交易成本的期权定价模型研究 被引量:2

Study on the option pricing model with the proportional transaction cost in the CEV process
下载PDF
导出
摘要 文章主要研究了CEV过程下比例交易成本的期权定价问题;利用无套利原理和It^o公式,建立了期权定价模型,得到了在该模型下期权价格所满足的微分方程;并且利用有限差分方法,给出具体的Crank-Ni-colson格式数值算法。 This paper mainly studies the valuation of European options with proportional transaction costs in the CEV proeess. The option prieing model and the differential equation of the option pricing model are derived By using the Ito formula and the no-arbitrage principle. Finally, the conerete Crank-Nicolson scheme numerical arithmetic of the differential equation is obtained by the finite differenee method.
机构地区 皖西学院数理系
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第10期1623-1626,共4页 Journal of Hefei University of Technology:Natural Science
基金 安徽省高校青年教师科研资助计划项目(2007jql177) 安徽省高校优秀青年人才基金资助项目(2009SQRZ189) 安徽省教育厅自然科学基金资助项目(KJ2009B095 KJ2009B113)
关键词 期权定价 CEV过程 交易成本 有限差分 option pricing constant elasticity of variance(CEV) process transaction cost finite difference
  • 相关文献

参考文献8

  • 1Black F,Scholes M. The pricing of options and corporate li abilities[J]. Journal of Political Economy, 1973, 81 ( 7 ) :637--655.
  • 2Hull J C. Options,futures,and other derivatives[M]. A Si mon & Schuster Company, 2005 : 399--447.
  • 3I.o A W, MacKinlay A C. Stock market prices do not follow random walks:evidence from a simple specification test[J].Review of Financial Studies, 1988, ( 1 ) :41 --66.
  • 4Cox J C, Ross S A. The valuation of option for alternative stochastic process [J]. Journal of Financial Economics, 1976, 3:145 -166.
  • 5Cox J C. The constant elasticity of variance option pricing model[J]. Journal of Portfolio Management, 1996, 22: 15--17.
  • 6Barles G, Mete H. Option pricing with transaction costs and a nonlinear Blaek--Scholes equation[J]. Journal of Stochast, 1998, 72(2): 369--397.
  • 7Leland H E. Option pricing and replication with transactions costs[J]. J Finance, 1985,40(5) : 1283--1301.
  • 8Bensaid B, Lesne J P,Pages H, et al. Derivative asset pricing with transaction costs [J]. Math Finance, 1992, 2: 63--68.

同被引文献32

  • 1杜雪樵,丁华.CEV模型下两值期权的数值解[J].南方经济,2006,35(2):23-28. 被引量:13
  • 2肖建武,尹少华,秦成林.养老基金投资组合的常方差弹性(CEV)模型和解析决策[J].应用数学和力学,2006,27(11):1312-1318. 被引量:16
  • 3Black F,Scholes M.The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,81(7):637-655.
  • 4John C H.Options,Futures,and Other Derivatives[M].Singapore:A Simon & Schuster Company,2005:399-447.
  • 5Loa W,Mackinalary A C.Stock market prices do not follow random walks:Evidence from s simple specification test[J].Review of Financial Studies,1988,1(1):41-46.
  • 6Cox J C,Ross S A.The valuation of option for alternative stochastic process[J].Journal of Financial Economics,1976,3(1/2): 145-166.
  • 7Cox J C.The constant elasticity of variance option pricing model[J].Journal of Portfolio Management,1996,22(S):15-17.
  • 8Davydov D,Linetsky V.Pricing and hedging path-dependent options under the CEV process[J].Management Science,2001,47(7): 949-965.
  • 9Fusai G,Recchioni M C.Analysis of quadrature methods for pricing discrete barrier options[J].Journal of Economic Dynamics & Control,2007,31(3):826-860.
  • 10Dicesare J,Mcleish D.Simulation of jump diffusions and the pricing of options[J].Insurance:Mathematics and Economics,2008, 43(3):316-326.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部