期刊文献+

一类具扩散的SIRS传染病模型解的渐近性质 被引量:2

Asymptotic Properties of Solutions to a SIRS Epidemic Model With Diffusion
下载PDF
导出
摘要 研究了一类具有非线性发生率的SIRS传染病模型的弱耦合反应扩散方程组.利用线性化和特征值的方法,讨论了无病平衡点和染病平衡点的局部稳定性,利用Liapunov函数的方法给出了无病平衡点渐近稳定的充分条件.结果表明,在小初值条件下,当接触率小的时候,无病平衡点是渐近稳定的. The weakly coupled reaction-diffusion system describing a SIRS epidemic model with nonlinear incident rate is investigated. The local asymptotic stabilities of equilibriums are given by linearization and eigenvalue. The asymptotic stabilities of disease-free equilibrium is investigated using the method of Liapunov functions. Our results show that the disease-free equilibrium is asymptotically stable if the contact rate is small and the initial values are small.
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期25-30,共6页 Journal of Nanjing Normal University(Natural Science Edition)
基金 江苏省教育厅自然科学基金(BK2006064)资助项目
关键词 非线性发生率 暂时免疫力 时滞 反应扩散系统 渐近性质 nonlinear incident rate temporary immunity time delay reaction diffusion system asymptotic properties
  • 相关文献

参考文献13

  • 1Kermaek W O, Mckendrick A G. Contributions to the mathematical theory of epidemics[J].Proc Roy Soe, 1927, A115: 700 -721.
  • 2Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulatiors of population sizes [J]. J Math Biol, 1992, 30(7): 693-716.
  • 3Anderson R M, May R. Infectious Diseases of Humen: Dynamics and Control[ M]. Oxford: Oxford University Press, 1991: 50-86.
  • 4Liu W M, Levins S A, Lwasa Y. Influence of nonlinear incidence rate upon the behavior of SIRS epidemiologieal models [J]. J Math Biol, 1986, 23(2) : 187-204.
  • 5Ruan S G, Wang W D. Dynamical behavior of an epidemic model with a nonlinear incident rate[ J]. J Diff Equs, 2003, 188 ( 1 ) : 135-163.
  • 6Yuliya N, Kyrychko, Konstantin Blyuss B. Global properties of a delayed SIR model with temporary immunity and nonlinear incident rate [ J ]. Nonlinear Analysis : RWA, 2005, 6 ( 3 ) : 495-507.
  • 7Ladyzenskaja O A, Solonnikov V A, Ural' ceva N N. Linear and quasilinear equations of parabolic type[J]. Providence, RI: Amer Math Soc, 1968: 105-219.
  • 8Pao C V. Nonlinear Parabolic and Elliptic Equations[M]. New York: Plenum Press, 1992: 96-98.
  • 9Pang P Y H, Wang M X. Strategy and stationary pattern in a three-species predator-prey model[J]. J Diff Equ, 2004, 200 (2) : 245-273.
  • 10Wu J H. Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Science [ M ]. New York : Springer-Verlag, 1996 : 71-72.

二级参考文献16

  • 1Pao C. V., Convergence of solutions of reaction-diffusion systems with time delays, Nonlinear Analysis, 2002,48: 349-362.
  • 2Hofbauer J., Sigmund K., The theory of evolution and dynamical systems, Cambridge: Cambridge University Press, 1988.
  • 3May R. M., Stability and complexity in Model ecosystems, Princeton: Princeton Univ. Press, 1974.
  • 4Teng Z. D., Permance and stability of Lotka-Volterra type N-species competitive system, Acta Mathematica Sinica, Chinese Series, 2002, 45(5): 905-918.
  • 5Alello W. G., Freedman H. I., A time-delay model of single species growth with stage tructure, Math. Biosci.,1990, 101:139 153.
  • 6Freedmann H. I., Wu J. H., Persistence and global asymptotic stability of single species dispersal models with stage structure, Quart. Appl. Math., 1991, 2: 351-371.
  • 7Gurney W. S. C., Nisbet R. M., Fluctuating periodicity, generation separation, and the expression of larval competition, Theor. Pop. Biol., 1985, 28: 150-180.
  • 8Liu S. Q., Chen L. S., Luo G. L. and Jiang Y. L., Asymptotic behaviors of competive Lotka-Volterra system with stage structure, J. Math. Anal. Appl., 2002, 271: 124-138.
  • 9Ou L. M., Luo G. L., Yang Y. L., and Li Y. P., The asymptotic behaviors of a stage-structured autonomous predator-prey system with time delay, J. Math. Anal. Appl., 2003, 283: 534-548.
  • 10Okubo A., Diffusion and ecological problems: mathematical models, Berlin, New York: Springer-Verlag, 1980.

共引文献15

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部