期刊文献+

势阱中的混沌及其量子对应 被引量:3

Chaos in Potential Well and Classical-Quantum Correspondence
下载PDF
导出
摘要 通过数值计算,研究了势阱谐振子耦合系统的经典动力学,发现随着能量E越低,或势阱阱宽2A越宽,或耦合系数λ越大,系统混沌程度越强.通过不同条件下最近邻能级间距分布与对应的经典动力学比较发现量子-经典结果符合得很好.对一些低能疤痕量子态找到了与其对应的经典周期轨道. This paper numerically studied the classical dynamics for the coupled potential well and the Harmonic oscillator system. It is found that the lower the system energy,or the wider the width of the potential well,or the larger the coupling constant,the stronger the chaos. By comparing with the nearest neighbor spacing distribution of energy levels,we found that the quantum results agree with the classical results very well. For some low energy quantum scaring states,we found the corresponding classical periodic orbits.
作者 汪昭 杨双波
出处 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期31-36,共6页 Journal of Nanjing Normal University(Natural Science Edition)
基金 国家自然科学基金(10674073)资助项目
关键词 势阱 混沌 经典量子对应 potential well chaos classic-quantum correspondence
  • 相关文献

参考文献5

  • 1Gutzwiller M C. Chaos in Classical and Quantum Mechanics [ M]. New York: Springer-Verlag,1990: 282-300.
  • 2Yang S B, Kellman M E. Semiclassical wave function in the chaotic region from a quantizing cantorus [ J ]. Chemical Physics, 2006, 322 ( 1 ) : 3040.
  • 3Henon M, Heiles C. The applicability of the third integral of motion: some numerical experiments[J]. Astron J, 1964, 69 ( 1 ) : 73-79.
  • 4Waterland R L, Yuan J M, Martens C C, et al. Classical-quantum correspondence in the presence of global chaos[J]. Phys Rev Lett, 1988, 61 (24) : 2 733-2 736.
  • 5Fromhold T M, Wilkinson P B, Sheard F W, et al. Manifestations of classical chaos in the energy level spectrum of a quantum well[J]. Phys Rev Lett, 1995, 75(6) : 1 142-1 145.

同被引文献36

  • 1Heller E J, O' Connor P W, Gehlen J. The eigenfunctions of classical chaostic systems[ J]. Physica Scripta, 1989, 40:354- 359.
  • 2Wintgen D, Marxer H, Briggs J S. Properties of off-shell coulomb radial wave functions [ J ]. J Phys A, 1987,20 :L965-L968.
  • 3Casati D, Chirikov B V, Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ M ]. Lect Notes Phys, 1979 93:334-352.
  • 4Komogrove A N. On conservation of conditionally periodic motion for small change in Hamilton function [ J]. Dokl Akad Nauk SSSR,1954, 98 : 527-530.
  • 5Arnold V I. Proof of a theorem of A. N. Komogrove of quasi-periodic motion[J]. Usp Mat Nauk SSSR,1963,18:13-40.
  • 6Moser J. On invariant curves of area-preserving mappings of an annulus [ J ]. Nachr Akad Wiss Gottingen Math--Phys, 1962, K1:1-20.
  • 7Zaslavsky G M, Zakharov My, Sagdeev R Z, et al. Stochastic web and diffusion of particles in a magnetic field [ J ]. Sov Phys JEPT, 1986,64:294-303.
  • 8Hu Bambi, Li Baowen, Liu Jie, et al. Quantum chaos of a kicked particle in an infinite potential well [J]. Phys Rev Lett, 1999,82:4 224-4 227.
  • 9Dana Itzhack, Amit Mary. General approach to diffusion of periodically kicked charges in a magnetic field [ J ]. Phys Rev E,1995,51 :R2 731-R2 734.
  • 10Casati G, Chirikov B V,Ford J, et al. Stochastic behavior of a quantum pendulum under periodic perturbation[ J]. LectNotes Phys,1979,93: 334-352.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部