期刊文献+

移相术中相移算法的窗函数整数近似方法分析 被引量:2

Window Function Integer Approximation Method of Phase Shifting Algorithms in Phase Shifting Technique
原文传递
导出
摘要 用离散傅里叶分析的方法将相移过程描述为频谱域滤波的过程,阐明了相移算法的窗函数整数近似法原理。由于相移的有限性会带来频谱泄露的问题,提出了好的移相算法窗函数应该满足主瓣窄、旁瓣小的观点,并给出了根据窗函数整数近似方法设计任意移相间距和任意移相步数移相算法的流程。选择矩形窗、三角窗、hanning窗和blackman窗生成4种11步移相算法,对振动误差和相移误差的分析验证了旁瓣小的hanning窗和blackman窗生成的算法对误差的灵敏度要小;再选择hanning窗生成了移相间距为π/2的5,11,15,39,51,76和101步7种移相算法,仿真验证了步数越多主瓣越小,对振动抑制能力越好,但需要更高的微位移器移动精度来获得有效的干涉条纹。在满足干涉条纹质量的前提下,步数多的移相算法对移相误差的抑制能力越好。最后模拟实验环境,验证了算法的性能。 Phase shift process is described as a filtering process in the frequency domain with the analysis of discrete Fourier and the theory of window function integer approximation method is also illustrated. In order to restrain the leakage problems from the finite phase shifting steps, a viewpoint that the algorithms should have narrow main lobe and small side lobes is presented. The flow of design phase shifting algorithms according to the integer approximation method is given, which can satisfy any phase shifting intervals and phase shifting steps. According to this method, four different 11-step algorithms with four different window functions which are rectangular window, triangle window, hanning window, and blackman window are designed. Analysis and simulation show that hanning window and blackman window with small lobes are less sensitive to errors. Seven different algorithms with the same phase shifting interval π/2 are designed by hanning window function, whose phase shifting steps are separately 5,11, 15,39,51,76 and 101 steps. Analysis of the relation between phase shifting algorithms and phase shift errors and vibration errors demonstrates that more phase steps lead to narrow main lobe and have higher resistance to vibration error (the 101 algorithm is virtually insensitive to vibration below 30 Hz), but needs higher accuracy of displacement actuator to get effective fringe contrast (the accuracy of displace actuator for 101 is 4 nm). If the enough signal strength is gotten, more steps mean better performance of phase shifting algorithms. Finally the result of stimulant experiment denominates the performance of phase shifting algorithms.
出处 《激光与光电子学进展》 CSCD 北大核心 2009年第10期100-105,共6页 Laser & Optoelectronics Progress
关键词 光学测量 移相算法 振动误差 移相误差 窗函数 optical measurement phase-shifting algorithm vibration error phase-shifting error window function
  • 相关文献

参考文献15

  • 1J. H. Bruning, D. R. Herriott, J. E. Gallagher et al.. Digital wavefront measuring interferometer for testsing optical surfaces and leses[J]. Appl. Opt., 1974, 13(11): 2693-2703.
  • 2陈进榜,朱家正,宋德真,陈星明.空间扫描和傅里叶变换算法分析干涉图[J].兵工学报,1989,10(4):24-31. 被引量:7
  • 3Greivenkamp J. E.. Generalized data reduction for hererodyne interferometry[J]. Opt. Eng, 1984, 23:350-351.
  • 4Carre P.. Installation et utilization du comparateur photoelectrigue et interferentiel du bureau international des poids ek measures[J]. Metrologia, 1966, 1:13-23.
  • 5Schmit J., J. Schwider. Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry[J]. Appl. Opt., 1995, 34(19): 3610-3619.
  • 6Hariharan P.. Digital phase-stepping intefferometry: effects of multiply reflected beams [J]. Appl. Opt., 1987, 26(13): 2506-2507.
  • 7Wizinowich P. L.. Phase shifting interferometry in the presence of vibration: a new algorithm and system[J]. Appl. Opt., 1990, 29(22): 3271-3279.
  • 8http://www.zygo.com/met/interferometers.htm.
  • 9http://www.intefferogroup.com/chanpinjieshao.htm.
  • 10K. Creath. Phase-measurement interferometry tehniques[J]. Prog.Opt., 1988, 26:349-393.

共引文献18

同被引文献13

  • 1http://www.zygo.com/met/interferometers.htm.
  • 2H. Brunning. Digital wavefront measuring interferometer for testsing optical surfaces and leses[J]. Appl. Opt., 1974, 13(11): 2693-2703.
  • 3http://www.interferogroup.com/chanpinjieshao.htm [2008-12-20].
  • 4J. H. Burge. Fizeau interferometer for large convex surfaces[C]. SPIE, 1995, 2536:127-138.
  • 5P. de Groot. 101-frame algorithm for phase-shifting interferometer[C]. SPIE, 1997, 3098:283-292.
  • 6P. de Groot. Phse-shift calibration errors in interferometers with spherical Fizeau cavities[J]. Appl. Opt., 1995, 34(16): 2856-2862.
  • 7P. de Groot. Vibration in phase shifting interferometer[J]. J. Opt. Soc. Am. A, 1995, 12(2): 354-365.
  • 8C. E Brophy. Effect of intensity error correlation on the computed phase of phase-shifting interferometer[J]. J. Opt. Soc. Am. A, 1990, 7(4): 537-541.
  • 9A. E. Rosenbluth, N. Bobroff. Optical sources of nonlinearity in Heterodyne interferometers[J]. Prec. Eng. 1990, 12(1): 7-11.
  • 10P. E. Ciddor. Refractive index of air: new equations for the visible and the near infrared[J]. Appl. Opt., 1996, 35(9): 1566-1573.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部