期刊文献+

一类基于蚁群优化的贝叶斯置信网结构学习策略及性能分析 被引量:1

Performance of class of ant colony optimization based on Bayesian networks structural learning strategy
下载PDF
导出
摘要 针对贝叶斯置信网的结构学习问题,提出一种遵循典型ACO算法框架(ACO-TSP)的贝叶斯网结构学习算法(ACO-BN),并拓展为包括EAS-BN、ACS-BN和MMAS-BN在内的一类算法。用这类算法在若干典型贝叶斯网络结构学习问题上分别与经典贝叶斯网学习算法(K2、B)、用于贝叶斯网学习的通用优化算法(simulated annealing、Tabu searching和genetic searching)以及L.M.de Campos等人提出的基于蚁群优化的贝叶斯网络结构学习算法Ant-K2SN和Ant-B进行了比较。实验结果表明,这类算法在总体性能上要优于经典贝叶斯网学习算法、通用优化算法以及Ant-K2SN和Ant-B算法,但是在时间性能上要略逊一筹。总的来说,这类算法是较为可行的一类贝叶斯置信网结构学习策略。 This paper presented an ACO Bayesian networks structural learning (BNSL) strategy (ACO-BN) follows the typical AGO framework (ACO-TSP) and extended to a class of ACO-BN algorithms including EAS-BN, ACS-BN and MMAS-BN. Experiments on some typical BNSL benchmark problems showed that ACO-BNs have much better capability than the classic BNSL algorithms (K2 and B), general purpose optimization algorithms for BNSL (simulated annealing, Tabu searching and genetic searching) and the two ACO inspired algorithms called Ant-K2SN and Ant-B proposed by L. M. de Campos et. al in learning effective Bayesian networks structure. However, ACO-BNs have a little inferior time performance than the other alogrithms mentioned above. On the whole, the ACO-BNs can be regard as a kind of feasible BN structural learning strategy.
出处 《计算机应用研究》 CSCD 北大核心 2009年第11期4069-4072,共4页 Application Research of Computers
基金 浙江省自然科学基金资助项目(Y106080) 宁波市自然科学基金资助项目(2006A610010) 宁波城市学院科研基金资助项目(zwx08054)
关键词 优化算法 蚁群优化算法 贝叶斯置信网 结构学习 optimization algorithm ant colony optimization Bayesian belief networks structural learning
  • 相关文献

参考文献14

  • 1BOUCKAERT R. Bayesian belief networks: from construction to inference[D]. Utrecht: University of Utrecht, 1995.
  • 2HECKERMAN D, GEIGER D, CHICKERING D. Learning Bayesian networks: the combination of knowledge and statistical data[J]. Machino Learning, 1995,20(3) :197-243.
  • 3DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[ J ]. IEEE Trans on Systems, Man, and Cybernetics-Part B, 1996,26(1 ):29-42.
  • 4DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem [ J]. IEEE Trans on Evolutionary Computation, 1997,1 ( 1 ) :53- 66.
  • 5STUTZLE H. FIolger MAX-MIN ant system[J].Future Generation Computer Systems, 2000,16(8) :889-914.
  • 6De CAMPOS L M, GAMEZ J A, PUERTA J M. Ant colony optimization for learning Bayesian networks [ J ]. International Journal of Approximate Reasoning, 2002,31 (3) :291-311.
  • 7De CAMPOS L M, GAMEZ J A, PUERTA J M. Learning Bayesian networks by ant colony optimizatlon:searching in two different spaces [J]. Mathware & Soft Computing, 2002,31 (4) :167-178.
  • 8WITTEN I H, FRANK E. Data mining: practical machine teaming tools and techniques with Java implementations[ M]. San Fransisco : Morgan Kaufmann, 2000 : 115-210.
  • 9COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data [ J ]. Machine Learning, 1992,9(4) : 309-347.
  • 10LAURITZEN S L, SPIEGELHALTER D J. Local computations with probabilities on graphical structures and their application to expert systems[J], Journal of the Royal Statistical Society, 1988,50 (2) :157-194.

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部