期刊文献+

认知无线电网络中基于SVD算法的无线麦克风信号的检测

Sensing of wireless microphone signal in cognitive radio networks using singular value decomposition
下载PDF
导出
摘要 在无线区域网中,作为授权用户的无线麦克风信号的低功率和窄带宽使得这种信号的检测非常困难。提出了基于奇异值分解的无线麦克风信号检测方法。对由接收信号形成的Hankel矩阵作奇异值分解,通过检查奇异值来检测无线麦克风信号的存在并估计该信号的中心频率,进而可以设置保护频带;非授权用户可以使用保护频带之外的频率资源,从而改善频谱效率。仿真结果证明了基于SVD的频谱检测算法具有更好的检测性能和很高的频率估计精度。 In a WRAN (wireless regional area network), the presence of a WM (wireless microphone) signal must be detected as a primary user. However, very narrow bandwidth and low power makes it difficult to sense a WM signal. This paper presented an SVD (singular value decomposition) based approach to sense and estimate a WM signal. After performing SVD on the received data matrix, the presence of a WM signal could be detected and then the center frequency of a WM signal could be estimated. By doing so, retained a guard bandwidth such that the other spectrum in this sensing band was still available for the secondary users and the spectrum efficiency could be improved. Simulation results prove the better detection performance by comparing the proposed method with the traditional energy detection. Simulations also show a high frequency estimarion precision by using the proposed SVD based algorithm as well.
出处 《计算机应用研究》 CSCD 北大核心 2009年第11期4223-4226,共4页 Application Research of Computers
基金 Nokia与北京邮电大学合作项目(MN6-2954514)
关键词 认知无线电 无线麦克风 授权用户 非授权用户 检测概率 虚警概率 奇异值分解 cognitive radio (CR) wireless microphone (WM) primary user (PU) secondary user (SU) probability of detection ( Pd ) probability of false alarm (Pf) singular value decomposition (SVD)
  • 相关文献

参考文献11

  • 1HU Wen-dong,WILLKOMM D,CHU Li-wen,et al. Dynamic frequency hopping communities for efficient IEEE 802. 22 operation [ J ]. IEEE Communications Magazine,2007,45(5) :80-87.
  • 2STEVENSON C R, CORDEIRO C, SOFER E, et al. Functional requirements for the 802.22 WRAN standard r47 [ R]. San Francisco: The institute of Electrical and Electronics Engineers 802.22 Working Group, 2006.
  • 3IEEE P802.22 Working Group for WRAN. Cognitive wireless RAN medium access control ( MAC ) and physical layer ( PHY ) specifications: policies and procedures for operation in the TV bands [ S ]. San Francisco: The Institute of Electrical and Electronics Engineers 802.22 Working Group ,2006.
  • 4ZENG Yong-hong, LIANG Ying-ehang. Covariance based signal detections for cognitive radio[ C ]//Proc of the 2nd IEEE DySPAN 2007. Ireland : IEEE Press,2007 : 202 - 207.
  • 5De PARTHAPRATIM, LIANG Ying-chang. Blind sensing algorithms for cognitive radio [ C]//Proc of IEEE Radio and Wireless Symposium. New Orleans, LA : IEEE Press,2007:201- 204.
  • 6UNNIKRISHNAN J, SHELLHAMMER S. Simulation of eigenvalue based sensing of wireless mics [ S ]. San Francisco: The Institute of Electrical and Electronics Engineers 802.22 Working Group,2007.
  • 7NOTOR J. The evolution of spectrum sharing in the IEEE 802.22 WRAN standards process [ EB/OL ]. [ 2006- 02 ]. http ://www. eecs. berkeley. edu/- dtse/3r_notor. ppt.
  • 8RIFE D C, BOORSTYN R R. Single tone parameter estimation from diserete-time observations[ J]. IEEE Trans on Information Theory, 1974,20(5) :591-598.
  • 9TEH K C,TENG C C,KOT A C,et al. Jammer suppression in spread spectrum[ C]//Proc of IEEE Singapore International Conference on Information Engineering. Singapore:IEEE Press,1995:220-224.
  • 10ZENG Yong-hong, LIANG Ying-chang. Maximum-minimum eigenvalue detection for cognitive radio[ C ]//Proc of the 18th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Greece:IEEE Press,2007:1-5.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部