期刊文献+

一种基于正常简档聚类的自适应异常检测模型

Adaptive anomaly detection model based on normal-profile clustering
下载PDF
导出
摘要 为解决入侵检测系统存在检测率低、网络数据变化适应性弱的问题,选取正常数据记录通过聚类算法建立正常简档,然后依据正常简档对网络数据记录进行检测,并结合已检测出来的正常数据记录对正常简档进行更新。KDDCUP99数据的实验表明,该系统能够适应数据的变化趋势,在保持较低的误报率前提下获得了较好的检测率。 To resolve the problem that intrusion detection system had a low detection rate and a weak adaptation to network data changes, this paper selected normal data records to establish a normal profile through the clustering algorithm, and detected the network data records according to the normal profile, and then updated the normal profile with the normal data records detected. KDD CUP99 experimental data shows that the detection system is adapt to data change trends and has a better detection rate while maintaining a very low false alarm rate.
作者 刘卫国 李斌
出处 《计算机应用研究》 CSCD 北大核心 2009年第11期4292-4294,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60773013) 湖南省自然科学基金资助项目(07JJ5078)
关键词 入侵检测 正常简档 聚类 自适应 intrusion detection normal profile clustering adaptive
  • 相关文献

参考文献8

  • 1熊平.基于正常轮廓更新的自适应异常检测方法[J].武汉大学学报(信息科学版),2007,32(9):842-845. 被引量:1
  • 2王丽娜,徐巍,刘铸.基于相似度聚类分析方法的异常入侵检测系统的模型及实现[J].小型微型计算机系统,2004,25(7):1333-1336. 被引量:16
  • 3何慧,张宏莉,张伟哲,方滨兴,胡铭曾,陈雷.一种基于相似度的DDoS攻击检测方法[J].通信学报,2004,25(7):176-184. 被引量:36
  • 4JUNG Y K, REX E G. Automated anomaly detection using timevariant normal profiling[ C]//Proc of World Automation Congress. Budapest , Hungary:Institute of Electrical and Electronics Engineers Computer Society ,2006 : 1-4.
  • 5MAHMOOD H, SUSAN M B. Adaptive intrusion detection with data mining [ C ]//Proc of IEEE International Conference on Systems, Man and Cybemetics. Washington DC : Institute of Electrical and Electronics Engineers Ine, 2003: 3097-3103.
  • 6YU Zhi-xin, CHEN Jing-ran, ZHU Tian-qing. A novel adaptive intrusion detection system based on data mining[ C]//Proc of the 4th International Conference on Machine Learning and Cybernetics. Guangzhou : Institute of Electrical and Electronics Engineers Computer Society, 2005: 2390-2395.
  • 7KALLE B, SIMIN N T. Adaptive real-time anomaly detection with incremental clustering [ J ]. Information Security Technical Report, 2007, 12(1) : 56-67.
  • 8HANJia-wei,MICHELINEK.数据挖掘[M].范明,孟小峰,译.北京:机械工业出版社,2003:232.

二级参考文献12

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部