期刊文献+

混合多分类器结合算法在遥感影像分类中的应用研究

Application research of hybrid multi-classifier combination algorithm on remote sensing image classification
下载PDF
导出
摘要 为了提高遥感影像分类精度,从抽象级和测量级的两个层次出发,提出混合多分类器结合算法。该算法利用不同子分类器的分类结果及对各类别的分类精度,设定单个类别精度的阈值,选择最优子分类器,得到部分类别的最终分类结果;然后使用基于抽象级Bagging算法和测量级上的最大置信度进行多分类器结合。该算法应用于北京1号遥感影像的分类研究,结果表明该算法的总体精度和单个类别的分类精度比选用的子分类器都有明显的提高,是一种新的有效算法。 To enhance the accuracy of image classification, proposed hybrid multiple classifier combination method from abstract level and measurement level. Firstly, used different sub-classifiers and the accuracy of different classes. Secondly, after set the threshold value of different single class accuracy, obtained the optimal sub-classifier to get final results of partial classes. Thirdly, combined Bagging algorithm at abstract level and the most large confidence algorithm at measurement level to classify other classes. Finally, used this method in Beijing-1 image classification shows a better enhancement, and results also indicate that the hybrid multi-classifier combination algorithm is a newly effective algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2009年第11期4368-4370,4374,共4页 Application Research of Computers
基金 河南省自然科学基金资助项目(0611051900)
关键词 多分类器结合 抽象级 测量级 BAGGING 精度评价 multiple classifier combination abstract level measurement level Bagging accuracy assessment
  • 相关文献

参考文献13

  • 1戴芹,马建文,李启青,陈雪,冯春.遥感数据的贝叶斯网络分类研究[J].电子与信息学报,2005,27(11):1782-1785. 被引量:5
  • 2罗来平,宫辉力,刘先林.基于决策树算法的遥感图像分类研究与实现[J].计算机应用研究,2007,24(1):207-209. 被引量:15
  • 3ITO Y, OMATU S. Extended LVQ neural network approach to land cover mapping [ J ]. IEEE Trans on Geoscience and Remote Sensing,1999, 37 (1) : 313-316.
  • 4PIERCE E, ULABYF T, SARABANDI K. Knowledge-based classifi- cation of polarimetric SAR images [ J ]. IEEE Trans on Geoscience and Remote Sensing, 1994,32(5): 1081-1086.
  • 5柏延臣,王劲峰.结合多分类器的遥感数据专题分类方法研究[J].遥感学报,2005,9(5):555-563. 被引量:58
  • 6GUTYA S, WECHSLER H. Face recognition using hybrid classifier systems[ C ]//Proc of IEEE International Confere-nce on Neural Networks. Washington DC : [ s. n. ], 1996 : 1017-1022.
  • 7XU L, KRZYZAK A, SUEN C Y. Methods of combining multiple classifiers and their application to handwriting recognition[ J]. IEEE Trans on Systems, Man, and Cybemetics, 1992,22 ( 3 ) : 418- 435.
  • 8BREIMAN L. Bagging predictors [J]. Machine Learning, 1996, 24(2) :123-140.
  • 9BAUER E, KOHAVI R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants [ J ]. Machine Leaming, 1999,36 ( 1-2 ) : 105-139.
  • 10HOTHORN T, LAUSEN B. Bundling classifiers by bagging trees [ J]. Computational Statistics & Data Analysis, 2005, 49 (4) : 1068-1078.

二级参考文献82

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部