期刊文献+

激光锁定F-P腔频率的有差锁定研究 被引量:3

External Optical Cavity Locked by Laser Frequency
原文传递
导出
摘要 基于有差伺服调节技术,实现了外置光学谐振腔的共振频率与钛宝石激光器工作频率的锁定。该技术采用压电陶瓷作为执行元件,通过对压电陶瓷的调制,实现了对透射激光功率的调制,并由锁相放大器解调获得伺服信号,该伺服信号经过高压放大器放大后控制压电陶瓷的伸缩来调控谐振腔的腔长,从而使腔的共振频率锁定在激光频率上。当激光工作于单一频率时,谐振腔的谐振频率可以长时间地与激光频率保持锁定,锁定后腔的透射光功率相对起伏的稳定性为2%。当激光频率扫描时,谐振腔的谐振频率可以在2GHz范围内不间断地与激光频率保持锁定。 With the peak-seeking servo-controlled technology based on a residual error,an external optical cavity can keep in resonance with the frequency of Ti-sapphire laser in the experiment. The servo loop uses a piezoelectric transducer (PZT) as a modulator,which modulates the intensity of the transmitted light passing through the cavity. The servo signal is obtained from the lock-in amplifier,then it is amplified by a high voltage amplifier,which adjusts the length of the cavity according to the laser frequency. In this approach,the resonant frequency of the cavity can be locked to the laser frequency for a long time as the laser operates in a fixed frequency and the relative fluctuation of output power from the cavity is lower than 2%. When the frequency of the laser scans,the cavity is also capable to follow the variation of laser frequency automatically in an uninterrupted range of 2 GHz.
出处 《光学学报》 EI CAS CSCD 北大核心 2009年第10期2822-2825,共4页 Acta Optica Sinica
基金 国家自然科学基金(10574045) 国家科技部重大研究计划项目子课题(2006CB921604)资助课题
关键词 激光光谱学 自动调节技术 光学谐振腔 腔增强光谱 laser spectroscopy automatic servo-controlled technology optical cavity cavity enhanced spectroscopy
  • 相关文献

参考文献4

二级参考文献18

  • 1吴升海,杨铭,杨晓华,郭迎春,毕志毅,马龙生,陈扬骎.磁旋转腔增强光谱技术[J].光学学报,2005,25(2):265-269. 被引量:3
  • 2陈艳萍,蒋燕义,毕志毅,马龙生.光学谐振腔增强碘分子调制转移光谱[J].中国激光,2005,32(5):655-658. 被引量:3
  • 3[1]Anthony O'Keefe, David A G Deacon. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1988, 59: 2544
  • 4[2]D Romaniini, Kachanov A, Sadeghi N. CW cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 264(3~4): 316~322
  • 5[3]Richard Engeln, Giel Berden, Rudy Peeters, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy. Review of Scientific Instruments, 1998, 69: 3763~3769
  • 6[4]Richard Engeln, Giel Berden, Esther van den Berg, et al. Polarization dependent cavity ring down spectroscopy[J]. Chem. Phys., 1997, 107(12): 4458~4467
  • 7[5]A S C Cheung, Tongmei Ma, Hongbing Chen. High-resolution cavity enhanced absorption spectroscopy using an optical cavity with ultra-high reflectivity mirrors[J]. Chemical Physics Letters, 2002, 353: 275~280
  • 8[6]Richard Engeln, Gerard Meijer. A Fourier transform cavity ring down spectrometer[J]. Rev. Sci. Instrum., 1996, 67 (8): 2708~2713
  • 9[7]He YaBai, Orr Brian J. Ring down and cavity enhanced absorption spectroscopy using a continuous wave tunable diode laser and rapidly swept optical cavity[J]. Chemical Physics Letters, 2000, 319(1~2): 131~137
  • 10[8]Anthony O' Keefe, James J Scherer, Joshua B Paul. CW Integrated cavity output spectroscopy. Chemical Physics Letters, 1999, 307: 343~349

共引文献19

同被引文献28

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部