期刊文献+

奇异辛几何的子空间生成的格(英文)

The Lattices Generated by Subspaces in Singular Symplectic Geometry
下载PDF
导出
摘要 利用奇异辛几何中的(m,0,1)型子空间构作一类格,并讨论它的几何性. We discuss the geometricity of lattices generated by subspaces of type(m,0,1) in singular symplectc geometry.
出处 《大学数学》 2009年第4期24-27,共4页 College Mathematics
关键词 辛几何 秩函数 矩阵 有限原子格 symplectic geometry rank function matrix finite atomic lattice
  • 相关文献

参考文献7

  • 1Wan Z. Geometry of classical groups over finite fields[M]. U.K. : Studentlitteratur, Charwell-Bratt, Bromley, 1993.
  • 2Huo Y, Liu Y and Wan Z. Lattices generated by transitive sets of subspaces under finite classical groups I[J].Comm. Algebra, 1992, 20(4): 1123-1144.
  • 3Huo Y and Wan Z. Lattices generated by transitive sets of subspaces under finite classical groups Ⅱ, the orthogonal case of odd eharacteristic[J]. Comm. Algebra, 1992, 20(9) : 2685-2727.
  • 4Huo Y, Liu Y and Wan Z. Lattices generated by transitive sets of subspaces under finite classical groups Ⅲ, orthogonal case of even characteristic[J].Comm. Algebra, 1993, 21(7) : 2351- 2393.
  • 5Huo Y, Wan Z. Lattices generated by transitive sets of subspaces under finite pseudo-symplectic groups [J]. Comm. Algebra, 1995, 23(10):3753-3777.
  • 6Huo Y, Wan Z. On the geometricity of lattices generated by orbits of subspaces under finite classical groups[J]. J. Algebra, 2001, 243(1):339-359.
  • 7Aigner M. Combinatoriial theory[M]. Berlin: Springer-Verlag, 1979.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部