期刊文献+

一类关于正规三角函数基的标准模糊系统逼近误差公式的讨论

Discussion to Standard Fuzzy Systems with Normal Trigonometric Membership Functions as Basic Functions
下载PDF
导出
摘要 在标准模糊系统的基础上提出了以正规三角函数为基函数的一类模糊系统.通过采用数值分析中的余项与辅助函数方法,对该类模糊系统进行了逼近误差精度的分析,给出了从SISO到MISO的误差界公式.最后,指出了这些公式在模糊系统的理论研究与实际应用的意义. This paper establishes the standard fuzzy system with partition of normal trigonometric membership function. Based on above standard fuzzy system, approximation error bounds problems are discussed by interpolation theory. Universal approximation error bounds of the fuzzy system from SISO to MISO are given and their relations are founded. The paper emploies error remainder term and auxiliary function in proving process for the first time. Finally, the significance of these formula is pointed for fuzzy systems theory and actual application.
作者 陈刚 王海晶
出处 《大学数学》 2009年第4期37-44,共8页 College Mathematics
基金 中国博士后基金资助(CPSF/2005/037763) 大连海事大学引进人才基金资助(2006)
关键词 标准模糊系统 逼近误差界 正规三角函数模糊划分 正规三角函数模糊基函数 standard fuzzy systems approaching error bounds trigonometric fuzzy partition trigonometric fuzzy basic functions
  • 相关文献

参考文献20

  • 1Buckley J J. Universal fuzzy controllers[J].Automatica, 1992, 28(6): 1245-1248.
  • 2Buckley J J. Sugeno type controllers are universal controllers[J].Fuzzy Sets Syst. , 1993, 53(3): 299-303.
  • 3Kosko B. Fuzzy systems as universal approximation[A]. San Diego: Proc. IEEE Int. Conf. Fuzzy Syst. , Mar. CA, 1992: 1153-1162.
  • 4Wang L X. Fuzzy systems are universal approximator[A]. San Diego: Proe IEEE Int. Conf. Fuzzy syst. , Mar. [C]. CA, 1992: 1163-1170.
  • 5Wang L X, Meddel J M. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning[J].IEEE Trans. Neural Networks, 1992, 13(5):807-814.
  • 6Wang L X. Universal approximation by hierarchical fuzzy systems[J].Fuzzy Sets Syst. , 1998, 93(3): 223-230.
  • 7Zeng X J, Singh M G. Approximation theory of fuzzy systems-SISO case[J]. IEEE Trans. Fuzzy Syst. , 1994, 12(2): 162-176.
  • 8Zeng X J, Singh M G. Approximation theory of fuzzy system-MIMO case[J]. IEEE Trans. Fuzzy Syst. , 1995, 13(2) : 219-235.
  • 9Zeng X J, Singh M G. Approxiamtion accuracy analysis of Fuzzy systems as function approximatorI-J'l. IEEE Trans. Fuzzy Syst., 1996, 14(1):44-63.
  • 10Zeng X J, John Keane A. Approximation capabilities of hierarchical Fuzzy systems[J].IEEE Trans. Fuzzy Syst. , 2005, 13(5): 659-672.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部