期刊文献+

一种基于FP-tree的最大频繁项目集挖掘算法 被引量:1

An Algorithm for Mining Maximum Frequent Item Sets Based on FP-tree
下载PDF
导出
摘要 提出一种基于FP-tree的最大频繁项目挖掘算法DMFIA-D,该算法运用双向搜索策略,根据FP-tree构造特征自顶向下选取最大频繁候选项集,自底向上对候选项集进行计数、剪枝最终确定最大频繁项目集。由于减少了最大频繁候选集,并对候选集进行有效剪枝,从而缩短算法的挖掘时间,提高挖掘效率。 Proposes DMFIA-D for mining maximum frequent item sets,this algorithm uses bi-directional searching, chooses candidates of the maximum frequent item sets with top-down searching, and takes count of them or prune them with bottom-up searching based on analyzing FP-tree structure characteristic. For reducing the maximum frequent candidate item sets and prune the candidates effectively, so reduces the time of mining and enhances the efficiency.
作者 梅俊 郑刚
出处 《现代计算机》 2009年第9期33-36,共4页 Modern Computer
关键词 数据挖掘 关联规则 最大频繁项目集 FP-TREE Data Mining Association Rules Maximum Frequent Item Sets FP-tree
  • 相关文献

参考文献10

  • 1Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of the ACM ,SIGMOD International Conference Management of Date. Washington, 1993:207-216.
  • 2Savasere A, Omiecinski E, Navathe SM. An Efficient Algo-rithm for Mining Association Rules. In: Proceedings of the 21st International Conference on VLDB. Zurich, 1995 : 432-444.
  • 3Agrawal R, Srikant R. Fast Algorithm for Mining Association Rules. In: Proceedings of the 20th International Conference on VLDB. Santiago, 1994:487-499.
  • 4BAYARDO R. Efiqciently Mining Long Patterns from Databases[A]. HAAS LM, ed. Proceedings of the ACM SIGMOD International Conference on Management of Data [C]. New York: ACM Press, 1998 : 85-93.
  • 5L IN D I, KEDEM ZM. Pincer-Search: A New Algorithm for Discovering the Maximum Frequent Set[A]. SCHEK H J, ed. Proceedings of the 6th European Conference on Extending Database Technology[C]. Heidelberg: Springer-Verlag,1998 : 105-119.
  • 6Han J, Jian P, Yiwen Y. Mining Frequent Patterns without Candidate Generation. In: Proceedings of the 2000 ACM SIGMOD International Conference Management of Data. Dallas, 2000:1-12.
  • 7路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 8宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 9吉根林,杨明,宋余庆,孙志挥.最大频繁项目集的快速更新[J].计算机学报,2005,28(1):128-135. 被引量:47
  • 10刘乃丽,李玉忱,马磊.一种基于FP-tree的最大频繁项目集挖掘算法[J].计算机应用,2005,25(5):998-1000. 被引量:8

二级参考文献22

  • 1Han J.W.,Kamber M..Data Mining:Concepts and Techniques.Beijing:Higher Education Press,2001.
  • 2Agrawal R.,ImielinSki T.,Swami A..Mining association rules between sets of items in large database.In:Proceedings of the ACM SIGMOD International Conference on Managementof Data,Washington,DC,1993,2:207-216.
  • 3Srikant A.R..Fast algorithms for mining association rules.In:Proceedings of the 20th International Conference Very Large Data Bases(VLDB’94).Santiago,Chile,1994,487-499.
  • 4Han J.W.,Pei J.,Yin Y..Mining partial periodicity using frequent pattern tree.Simon Fraser University:Technical Report TR-99-10,1999.
  • 5Cheung D.,Han J.W.,Ng V.,Wong V..Maintenance of discovered association rules in large databases:An incremental updating technique.In:Proceedings of the 12th International Conference on Data Engineering(ICDE),New Orleans,Louisiana.1996.106-114.
  • 6Cheung D.LEE S.Kao B.A general incremental technique for maintaining discovered association rules.In:Proceedings of the 5th International Conference on Database Systems for Advanced Applications(DASFAA),Melbourne,Australia,World Scientific,1997,185-194.
  • 7Han J.W.,Pei J.,Yin Y..Mining frequent patterns without candidate generation.In:Proceedings of the 2000 ACM-SIG-MOD International Conference on Management of Data,Dal1as,2000,1-12.
  • 8Bayardo R.J..Efficiently mining long patterns from databases.In:Haas L.M.,Tiwary A.eds..Proceedings of the ACMSIGMOD International Conference on Management of Data.New York:ACM Press,1998,85-93.
  • 9Lin D.,Kedem Z.M..Pincer-Search:A new algorithm for discovering the maximum frequent set.In:Scheck H.J.,Saltot F.,Ramos I.et al,eds..Proceedings of the 6th European Conference on Extending Database Technology,Heidelberg:Snringer-Verlag.199R.105-119.
  • 10Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页

共引文献238

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部