期刊文献+

福氏志贺菌基因mdoD对细菌生长、耐热击及酸碱能力的影响

Effects of Gene mdoD on the Growth,Heat Shock and pH Tolerance of Shigella flexneri
下载PDF
导出
摘要 本试验以福氏志贺菌和opgD突变体(敲除基因mdoD的福氏志贺菌)为出发菌株,研究了福氏志贺菌基因opgD在低渗和正常渗透压条件下,在标准培养基和洗菜水中对细菌生长、耐热击及耐酸碱能力的影响。试验结果表明:在标准培养基中,opgD突变体生长效率比福氏志贺菌低,提高渗透压后突变体与福氏志贺菌生长曲线相似;在不同的洗菜水中,opgD突变体生长曲线不同,其生长速率明显比福氏志贺菌慢,加盐提高渗透压之后,福氏志贺菌和opgD突变体对数生长期均提前;福氏志贺菌和opgD突变体的抗性试验结果表明:opgD突变体抗热击的能力比福氏志贺菌显著降低,而opgD突变体的耐碱能力却比福氏志贺菌更强。 The Shigellaflexnei wild type and the opgD mutant (gene mdoD was knocked out) were chosen in this study to explore the effects of gene mdoD of S. flexneri on the growth in the media and different vegetables' wash waters under normal and hypoosmotic conditions, heat shock and pH tolerance. The results showed that the growth rate of opgD mutant was lower than S. flexnei in media, while the S. flexnei and opgD mutant grew similarly between normal osmolarity and hypoosmotic media; opgD mutant grew differently according to different wash waters and significantly slower than the growth of S. flexnei, the S. flexnei and opgD mutant grew faster after adding salt to hypoosmotic wash waters. The gene mdoD deletion in S. flexneri increased significantly the growth at alkali condition, while the deletion of gene mdoD decreased the resistance to heat shock.
出处 《上海交通大学学报(农业科学版)》 2009年第5期527-531,共5页 Journal of Shanghai Jiaotong University(Agricultural Science)
基金 陕西省科技攻关项目(2008K01-06)
关键词 福氏志贺菌 基因mdoD opgD突变体 渗透调节周质葡聚糖 热击 Shigellaflexneri gene mdoD opgD mutant osmoregulated periplasmic glueans heat shock
  • 相关文献

参考文献15

  • 1Bohin J P. Osmoregulated periplasmic glucansin Proteobacteria-a mini review[J].FEMS Microbiol. Lett, 2000,186:11-19.
  • 2Pianetti A, Battistelli M, Citterio B,et al. Morphological changes of A eromonas hydrophila in response to osmotic stress[J]. Micron, 2009, 40: 426-433.
  • 3Lequette Y, Odberg-Ferragut C, Bohin J P. Identification of mdoD, an mdoG paralog which encodes a twin-arginine-dependent periplasmic protein that controls osmoregulated periplasmic glucan backbone structures[J]. J Bacteriol, 2004, 186: 3695-3702.
  • 4Yannick L, Eglantine R, Aure'lie D, Greenberg E. P, Jean-Pierre B. Linear osmoregulated periplasmic glucans are encoded by the opgGH locus of Pseudomonas aeruginosa[J]. Microbiology, 2007, 153: 3255-3263.
  • 5Cogez V, Gak E, Puskas A, Kaplan S, Bohin J P. The opgGIH and opgC genes of Rhodobacter sphaeroides form an operon that controls backbOne synthesis and succinylation of osmoregulated periplasmic glucans[J]. Ettropean Journal of Biochemistry, 2002,269: 2473-2484.
  • 6Dylan T, Helinski D R, Ditta G S. Hypoosmotic adaptation in Rhizobium meliloti requires β-(1→2)-glucan[J]. J. Bacteriol, 1990, 172: 1400-1408.
  • 7Mah T, Pitts B, Pellock B. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance[J]. Nature, 2003,426: 306-310.
  • 8Dylan T, Ielpi L, Stanfield S. Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens[J]. Proc Nail Acad Sci USA, 1986, 83: 4403-4407.
  • 9Breedveld M, Miller K. Cyclic β-glucans of members of the family Rhizobiaceae[J]. Microbiol. Rev, 1994, 58: 145-161.
  • 10Link A J, Robison K, Church G M. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12[J]. Electrophoresis, 1997,18:1259-1313.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部