期刊文献+

反应温度对纳米碳化钒(V_8C_7)制备的影响 被引量:2

EFFECT OF TEMPERATURE ON PREPARATION OF VANADIUM CARBIDE(V_8C_7) NANOPOWDER
下载PDF
导出
摘要 使用偏钒酸铵和纳米炭黑为原料,先制备前驱体粉末,再将前驱体粉末在一定温度下热处理得到纳米V8C7粉末。采用X射线衍射仪(XRD)和扫描电镜(SEM)对不同温度下反应产物的相组成和微观结构进行了分析。结果表明:反应温度对纳米碳化钒制备过程中的相组成和微观结构具有重要影响;随着温度升高,将发生NH4VO3→V2O5→VO2→V5O9+V4O7→V2O3→VC1-x→V8C7的相转变,反应产物的粒度呈增大→减小→增大的变化趋势,1100℃时粉末显示较好的分散性,并且主要由直径100nm左右的球形颗粒组成。 The precursor powder was prepared from the mixture of ammonium vanadate (NH4VO3) and nanometer carbon black. Vanadium carbide (V8C7) nanopowder could be prepared by thermal processing the precursor. The phase composition and microstrueture of the product were analyzed by X-ray diffractometer (XRD) and scanning electron microscope (SEM). The results show that reaction temperature has important effect on the phase composition and mierostructure during synthesis of vanadium carbide (V8C7 ) nanopowder. With increasing temperature, the following phase transformations NH4VO3→V2O5→VO2→V5O9+V4O7→V2O3→VC1-x→V8C7 occur, and the particle sizes of the product are changed in order of increasing→decrea- sing→increasing. The powder synthesized at 1100℃ show good dispersiveness and is mainly composed of uniformly-sized spherical particles with a mean diameter of -100 nm.
出处 《粉末冶金工业》 CAS 北大核心 2009年第5期37-41,共5页 Powder Metallurgy Industry
基金 国家"863"专题课题项目(2008AA031105)
关键词 纳米碳化钒 前驱体粉末 相组成 微观结构 vanadium carbide nanopowder precursor powder phase composition microstructure
  • 相关文献

参考文献18

  • 1Oelerich W,Klassen T,Bormann R. Comparison of the catalytic effects of V, V2O5 VN, and VC on the hydrogen sorption of nanocrystalline Mg [ J ]. J. Alloy. Compd. ,2001,322(1-2) :L5-L9.
  • 2Preiss H, Schultzeb D, Szulzewsky K. Carbothermal synthesis of vanadium and chromium carbides from so lution-derived precursors [ J ] . J. Eur. Ceram. Soc., 1999,19(2):187- 194.
  • 3吴恩熙,颜练武,钱崇梁.纳米V_8C_7粉末的制备[J].中南大学学报(自然科学版),2005,36(5):771-775. 被引量:8
  • 4Reichl W, Hayek K. The vanadium subsurface alloy on polycrystalline rhodium: formation and catalytic properties[J].J. Catal. ,2004,222(1):53- 64.
  • 5Schwarzkopf P,Kieffer P. Refractory hard metals[M], New York :MacMillan, 1953.
  • 6Zhang B,Li Z Q. Synthesis of vanadium carbide by mechanical alloying[J].J. Alloy. Compd. , 2005,392 ( 1 - 2):183-186.
  • 7Kapoor R, Oyama S T. Synthesis of vanadium carbide by temperature programmed reaction[J]. J. Solid. State. Chem. ,1995,120(2):320-326.
  • 8Lee J S,Locatelli S,Oyama S T,Boudart M. Molybdenum carbide catalysts 3. Turnover rates for the hydro- genolysis of n-butane[J]. J. Catal. , 1990, 125 (1) : 157 -170.
  • 9Mondal S, Banthia A K. Low-temperature synthetic route for boron carbide[J]. J. Eur. Ceram. Soc. , 2005, 25(2-3) :287-291.
  • 10Greco C C, Gallo T A, Sherif F G. US Patent, No. 5246685,1993.

二级参考文献13

  • 1冯端 王业宁 丘第荣.金属物理[M].北京:科学出版社,1995..
  • 2Choi K, Hwang N M, Kim D Y. Effect of VC addition on microstructural evolution of WC-Co alloy: mechanism of grain growth inhibition[J]. Powder Metallurgy, 2000, 43(2): 168-172.
  • 3Yamamoto T, Ikuhara Y, Sakuma T. High resolution transmission electron microscopy study in VC-doped WC-Co compound[J]. Science and Technology of Advanced Materials, 2000, 1(2): 97-104.
  • 4Lay S, Hamar T S, Lacker A. Location of VC and Cr3C2 codoped WC-Co cermets by HREM and EELS[J]. International Journal of Refractory Metals and Hard Materials, 2002, 20(1): 61-69.
  • 5Upadhyaya A, Sarathy D, Wagner G. Advances in alloy design aspects of cemented carbide[J]. Materials and Design, 2001, 22(6): 511-517.
  • 6Loubiere S, Laurent C, Bonino J P. Elaboration, microstructure and reactivity of Cr3C2 powders of different morphology[J]. Materials Research Bulletin, 1995, 30(12): 1535-1546.
  • 7Jeong G C, Jeoseph H, Jin W H. Synthesis and catalytic properties of vanadium interstitial compounds[J]. Applied Catalysis A: General, 1998, 168(1): 47-56.
  • 8Kapoor R, Oyama S T. Synthesis of vanadium carbide by temperature programmed reaction[J]. J Solid State Chem, 1995, 155(2): 320-326.
  • 9Sadangi R K, McCandlishL E, Kear B H, et al. Synthesis and characterization of submicron vanadium and chromium carbide grain growth inhibitors[A]. Oakes J, Reinshagn J H. Advances in Powder Metallurgy & Particulate Materials (Part 1)[C]. Princeton: MPIF, 1998. 9-15.
  • 10Meunier F. Synthesis and characterization of high specific surface area vanadium carbide: application to catalytic oxidation[J]. Journal of Catalysis, 1997, 169(1): 33-44.

共引文献7

同被引文献45

  • 1刘冬生,肖西卫,刘宝昌.纳米硬质合金及其在钻探工程中的应用前景[J].粉末冶金工业,2004,14(2):32-34. 被引量:3
  • 2李志希,范景莲,缪群.WC-10Co硬质合金热压工艺与晶粒抑制剂的研究[J].粉末冶金工业,2005,15(1):7-11. 被引量:2
  • 3程凤军,王一三,赖丽,石建国,王静,丁义超,杨廷贵.原位生成超细VC颗粒增强铁基复合材料[J].钢铁钒钛,2005,26(2):58-61. 被引量:10
  • 4吴恩熙,颜练武,钱崇梁.纳米V_8C_7粉末的制备[J].中南大学学报(自然科学版),2005,36(5):771-775. 被引量:8
  • 5吴其山.超细WC-Co硬质合金研究综述[J].中国钨业,2005,20(6):35-40. 被引量:20
  • 6Didziulis S V, Butcher K D. A perspective on the properties and surface reactivities of carbides and nitrides of titanium and va- nadium[J]. Coordination Chemistry Reviews, 2013, 257 (1): 93- 109.
  • 7SUN Z M, Ahuja R, Lowther J E. Mechanical properties of va- nadium carbide and a ternary vanadium tungsten carbide[J]. Solid State Communications, 2010, 150(15/16): 697-700.
  • 8LEI M, ZHAO H Z, YANG H, et al. Synthesis of transition met- al carbide nanoparticles through melamine and metal oxides[J]. Journal of the European Ceramic Society, 2008, 28(8): 1671- 1677.
  • 9Mahajan M, Singh K, Pandey O P. Single step synthesis of ha- no vanadium carbide-VsC7 phase[J]. Journal of Refractory Met- als and Hard Materials, 2013, 36 (1): 106-110.
  • 10Neylon M K, Choi S, Kwon H, et al. Catalytic properties of ear- ly transition metal nitrides and carbides: n-butane hydrogenoly- sis, dehydrogenation and isomerization[J]. Applied Catalysis A General, 1999, 183(2): 253-263.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部