期刊文献+

基于支持向量机的通信装备采购费用预测模型构建

The Establishment of Predicting Model in Communications Equipment Acquisition Cost Based on Support Vector Machine
下载PDF
导出
摘要 高科技通信装备采购耗资巨大,对通信装备采购费用进行预测分析势在必行。介绍了支持向量机(support vector machines,SVM)非线性回归估计理论,利用SVM方法,经过4个过程构建出通信装备采购费用预测模型,并以某型无线电台为实例对模型进行了验证,最后总结了SVM方法的费用预测基本步骤。 The high technology communications equipment is purchased hugely, and predicting the acquisition cost of communications equipment is imperative. The paper introduces the non-linear regression theory of support vector machine(SVM), and establishes the communications equipment acquisition cost predicting model by the method of support vector machine in four steps, and validates the model by military radio transceiver. At last, the basic step of cost prediction by support vector machine method is summed up.
出处 《装备指挥技术学院学报》 2009年第5期28-31,共4页 Journal of the Academy of Equipment Command & Technology
关键词 支持向量机 通信装备 采购费用 预测模型 support vector machine(SVM) communications equipment acquisition cost predicting model
  • 相关文献

参考文献6

二级参考文献37

  • 1张正则 译.飞机费用估算译文集[M].航空工业部科学技术情报研究所,1985..
  • 2Vapnik V N.Statistical Learning Theory[M]John Wiley,New York,1998
  • 3Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters, 1999;9(3)
  • 4张正则译.飞机费用估算译文集[M].航空工业部科学技术情报研究所,1985..
  • 5Zhu Jiayuan,Bo Ren,Heng Xi Zhang et al.Time Series Prediction via New Support Vector Machines[C].In:proceedings of ICMLC′2002,IEEE,China, Beijing, 2002: 364~366
  • 6Vapnik V N. Statistical Learming Theory[M]. John Wiley, New York.1998.
  • 7Zhu Jia-Yuan, Zhang Heng-xi, Guo Ji-Lian, et al. Data Distributions Automatic Identification Based on SOM and Support Vector Machines[C]. IEEE Proceedings of the First International Conference of Machine Learning and Cybernetics, 2002. 340-344.
  • 8Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 9Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 10Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.

共引文献352

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部