期刊文献+

P_(2r,4m+2)图(r=8,10)的优美性

Gracefulness of Graph P_(2r,4m+2)(r=8,10)
下载PDF
导出
摘要 设u、v是两个固定顶点,用b条内部互不相交且长度皆为a的道路连接u、v所得的图用Pa,b表示.K.M.Kathiresan证实P2r,2m-1(r,m皆为任意正整数)是优美的,且猜想:除了(a,b)=(2r-1,4m-2)外,所有的Pa,b都是优美的.杨元生教授已证实P2r-1,2m-1是优美的,并且证实了当r=1,2,3,4,5,6,7,9时P2r,2m也是优美的.该文证实当r=8,10时P2r,4m+2也是优美的. Let u and v be two fixed vertices,connect u and v by means of b internally disjoint paths of length a each,the resulting graphs is denoted by Pa,b.K.M.Kathiresan has shown that P2r,2m-1 is graceful and conjectured that Pa,b is graceful except when(a,b)=(2r-1,4m-2).Prof.YANG Yuansheng has shown that P2r-1,2m-1 and P2r,2m(r=1,2,3,4,5,6,7,9) are graceful.In this paper,P2r,4m+2 is proved to be graceful for r=8,10.
作者 容青
出处 《广西师范学院学报(自然科学版)》 2009年第2期37-40,共4页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 广西教育厅科研项目(200807LX431) 广西师范学院青年科研基金项目(0709B006)
关键词 优美图 顶点标号 边标号 graceful graph vertex labeling edge labeling
  • 相关文献

参考文献4

  • 1KATHIESAN K M.Two classes of graceful graphs[J].ARS COMBINATORIA,2000,22:491-504.
  • 2GALLIAN J A.A dynamic survery of graph labeling[J/OL].The electronic journal of combinatorics,2008,#DS6.http://www.combinatorics.org/surveys/ds6.pdf.
  • 3杨元生,容青,徐喜荣.一类优美图[J].Journal of Mathematical Research and Exposition,2004,24(3):520-524. 被引量:14
  • 4容青,杨元生.一类优美图[J].广西师范学院学报(自然科学版),2002,19(3):1-4. 被引量:3

二级参考文献12

  • 1RINGEL G. Problem 25 in theory of graphs and its application [J]. Proc. Symposium Smolenice,1963, 162.
  • 2ROSA A. On certain Valuations of the Vertices of a Graph [M]. Theory of Graphs, Proc. Internat,Sympos, Rome. , 1966, 349-355.
  • 3GOLOMB S W. How to Number a Graph [M]. Graph Theory and Computing, Academic Press, New York, 1972, 23-37.
  • 4GALLIAN J A. A dynamic survery of graph labeling [J]. The electronic journal of combinatorics,2000, 6.
  • 5KATHIESAN K M. Two classes of graceful graphs [J]. Ars Combinatoria, 2000, 55.. 129-132.
  • 6Ringel G. Problem 25 in theory of graphs and its application[J]. Proc Symposium Smolenice, 1963,162.
  • 7Rosa A. On certain valuations of the vertices of a graph,Theory of Graphs. Proc Internat,Sympos,Rome, 1966.349-355.
  • 8Golomb S W. How to number a graph,Graph theory and computing[M]. New York:Academic Prees, 1972.23-37.
  • 9Gallian J A. A dynamic survery of graph labeling[J]. The electronic journal of combinatorics,2000, (6).
  • 10Kathiesan K M. Two classes of graceful graphs[J]. ARS combinatoria,2000, (22):491-504.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部