期刊文献+

单、多活性中心种类聚丙烯催化剂的Monte Carlo模拟 被引量:1

MONTE CARLO SIMULATION OF SINGLE-/MULTI-ACTIVE SITE CATALYSTS FOR PROPYLENE POLYMERIZATION
下载PDF
导出
摘要 采用Monte Carlo模拟技术研究了在不考虑聚合物颗粒内物料与热量传递效应及不存在氢气作用下的单、多活性种类催化剂催化的丙烯聚合动力学。探讨了聚合产率、催化剂活性中心分率以及多分散指数随时间的变化规律,并对单、多活性中心种类催化的反应体系分别作了比较。基于Monte Carlo方法的模型得出的聚合动力学结果与文献相一致。此外,由Monte Carlo模拟也得到,催化剂多活性中心种类的性质对聚合产物的分布性质有很大影响;以多分散指数而言,多活性中心种类催化剂催化得到的聚丙烯多分散指数要比单活性中心种类催化剂催化得到的产物多分散指数宽。 A Monte Carlo model was established to describe the propylene polymerization kinetics catalyzed by single- or multi-active site catalyst, ignoring the effects of intraparticle mass and heat transfer and the effect of hydrogen. Corresponding propylene polymerization kinetic data, including polymerization yield, concentration transformation of catalyst active sites, polydispersity etc. , were obtained via the model. Comparisons of the kinetic results between the polymerization catalyzed by the single-active site catalyst and the multi-active site type catalyst were conducted via the model. The simulated kinetic results are found to be in agreement with the reference ones obtained experimentally. The studied results showed that nature of multi-active site type could have a significant influence on polymer distribution properties. As of the polydispersity (PDI), polypropylene catalyzed by multi-active site type catalyst has a broader PDI than the one catalyzed by the single-site catalyst, under the same reaction circumstance.
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2009年第5期697-701,共5页 Acta Petrolei Sinica(Petroleum Processing Section)
基金 中国石油兰州石油化工研究中心课题(2007019) 固体表面物理化学国家重点实验室(厦门大学)课题(200505)项目资助
关键词 MONTE CARLO模拟 单、多活性中心种类催化剂 丙烯聚合动力学 Monte Carlo simulation single- or multi-active site 'catalyst propylene polymerization kinetics
  • 相关文献

参考文献9

  • 1SOARES J B P, HAMIELEC A E. Kinetics of propylene polymerization with a non-supported heterogeneous Ziegler-Natta catalyst Effect of hydrogen on rate of polymerization, stereoregularity, and molecular weight distribution[J]. Polymer, 1996, 37(20): 4607-4614.
  • 2SOARES J B P. Mathematical modelling of the microstructure of polyolefins made by coordination polymerization: A review[J]. Chemical Engineering Science, 2001, 56(13): 4131-4153.
  • 3PLATKOWSKI K. REICHERT K H. Application of Monte Carlo methods for modeling of polymerization reactions[J]. Polymer, 1999, 40(4): 1057-1065.
  • 4罗正鸿,曹志凯,苏耀堂.Monte Carlo Simulation of Propylene Polymerization (Ⅰ) Effects of Impurity on Propylene Polymerization[J].Chinese Journal of Chemical Engineering,2006,14(2):194-199. 被引量:8
  • 5LUO Z H, WANG W, SUP L. Modeling of propylene polymerization catalyzed by single-/multiactive site catalyst: A Monte Carlo study[J]. Journal of Applied Polymer Science, 2008, 119(6) : 3060-3067.
  • 6ZACCA J J, DEBLING J A, RAY W H. Reactor residence time distribution effects on the multistage polymerization of olefins Ⅰ Basic principles and illustrative examples, polypropylene[J]. Chemical Engineering Science, 1996, 51(21) : 4859-4886.
  • 7GILLESPIE D T. Exact stochastic simulation of coupled chemical reactions[J].Journal of Physical Chemistry, 1977, 81(25): 2340-2361.
  • 8HE J P, CHEN J M, YANG Y L. Monte Carlo simulation of kinetics and chain length distributions in living free-radical polymerization [J]. Macromolecules, 1997, 30(25):8010-8018.
  • 9FLORY P J. Principles of Polymer Chemistry[M]. Ithaca: Cornell University Press, 1953: 45-73.

二级参考文献1

共引文献7

同被引文献12

  • 1王静,罗正鸿,郑屹,曹志凯,温少桦.非稳态操作下的聚丙烯液相环管反应器中微观模拟[J].石油学报(石油加工),2007,23(3):70-74. 被引量:2
  • 2ZHANG H X, LEE Y J, PARK J R, et al. Control of molecular weight distribution for polypropylene obtained by a commercial Ziegler-Natta catalyst: Effect of a cocatalyst and hydrogen[J]. Journal of Applied Polymer Science, 2011, 120(1): 101-108.
  • 3ZHANG H X, LEE Y J, PARK J R, et al. Control of molecular weight distribution for polypropylene obtained by commercial Ziegler-Natta catalyst: Effect of temperature [J]. Polymer Bulletin, 2011, 67 ( 8 ) : 1519-1527.
  • 4FERREIRA L C, MELO P A, CROSSETTI G L, et al. Polymerization of ethylene by (a-diimine) nickel catalyst and statistical analysis of the effects of reaction conditions[J]. Polymer Engineering and Science, 2010, 50(9): 1797-1808.
  • 5BOX G E P, WILSON K B. On the experimental attainment of optimum conditions [J]. Journal of the Royal Statistical Society Series B (Methodological), 1951, 13(1): 1-45.
  • 6NEGI L M, JAGGI M, TALEGAONKAR S. A logical approach to optimize the nanostructured lipid carrier system of irinotecan : Efficient hybrid design methodology [J ]. Nanoteehnology, 2013, 24 ( 1 ): 15104-15114.
  • 7CAN M Y, KAYA Y, ALGUR O F. Response surface optimization of the removal of nickel from aqueous solution by cone biomass of Pinus sylvestris [J]. Bioresource Technology, 2006, 97(14): 1761-1765.
  • 8SINGH K P, RAI P, PANDEY P, et al. Modeling and optimization of trihalomethanes formation potential of surface water (a drinking water source) using Box- Behnken design[J]. Environmental Science and Pollution Research, 2012, 19(1) : 113-127.
  • 9IMANDI S B, BANDARU V R, SOMALANKA S R, et al. Optimization of medium constituents for the production of citric acid from byproduct glycerol using Doehlert experimental design[J]. Enzyme and Microbial Technology, 2007, 40(5): 1367-1372.
  • 10KISSIN Y V, RISHINA L A. Hydrogen effects in propylene polymerization reactions with titanium-based Ziegler-Natta catalysts. I. Chemical mechanism of catalyst activation[J]. Journal of Polymer Science Part A Polymer Chemistry, 2002, 40(9) : 1353-1365.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部