期刊文献+

基于背景抑制及顶点成分分析的高光谱异常小目标检测 被引量:5

Anomaly detection of hyperspectral imagery based on background restrain and VCA
下载PDF
导出
摘要 高光谱图像异常小目标检测数据量大、信息提取困难.文中提出了一种不需要先验信息并且计算复杂度较低的快速检测算法——基于背景抑制及顶点成分分析(EVCA)的异常小目标检测.利用高光谱图像端元是单形体顶点这一特性,在抑制背景后的图像上提取目标端元,并结合光谱匹配技术完成目标检测.为了验证新方法的有效性,与不经过背景抑制的VCA算法及传统检测算法进行了比较.实验结果表明,该算法不需要先验信息,体现了较好的检测效果. In order to solve the problem of mass data and hard extraction of information in the anomaly detection of hyperspectral imagery, this paper presents a fast detection algorithm that has lower complexity of computation and does not need prior knowledge--anomaly detection of hypcrspectral imagery based on background restrain and VCA (vertex component analysis). By making use of the characteristic that the high spectral image' s endmembers are the vertexes of single figure, this algorithm extracts endmembers from the image after restraining background, and detects the anomaly target by combining the spectrum matching technology. But the anomaly target to detect usually has low probability and is badly affected by the noise from background. So we first extract the information of back- ground and use orthogonal projection to restrain it. The experiments show that this algorithm can improve the detec- tion performance.
出处 《应用科技》 CAS 2009年第9期11-14,共4页 Applied Science and Technology
基金 国家自然科学基金资助项目(60672034) 高等学校博士学科点基金资助项目(20060217021) 黑龙江省自然科学基金资助项目(ZJG0606-01)
关键词 高光谱图像 目标检测 顶点成分分析 hyperspectral imagery anomaly detection vertex component analysis
  • 相关文献

参考文献7

  • 1TAYLOR J S,CRISTIANINI N.模式分析的核方法[M].北京:机械工业出版社,2006.
  • 2REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Trans Speech Signal Process, 1990, 38( 10): 1760-1770.
  • 3COMMON P, JUTFEN C. Blind separation of sources, part Ⅱ: Problem statement [J]. Signal Process, 1991 (24) : 11-20.
  • 4BAILS J, GUALTIER J A, Analyzing hyperspectral data with independent component analysis[J]. Proc SPIE, 1997 (3240) : 133-143.
  • 5NASCIMENTO J M P, BIOUCAS J M. Vertex component analysis: a fast algorithm to unmix hyperspectral data [J]. IEEE Transactions on Geo Science and Remote Sensing, 2005 (43) :4-17.
  • 6李智勇,郁文贤,匡纲要,吴昊.基于高维几何特性的高光谱异常检测算法研究[J].遥感技术与应用,2003,18(6):379-383. 被引量:20
  • 7李智勇,匡纲要,郁文贤,薛绮.基于高光谱图像主成分分量的小目标检测算法研究[J].红外与毫米波学报,2004,23(4):286-290. 被引量:27

二级参考文献9

  • 1薛永祺 王建宇.实用型模块化机载成像光谱仪[A]..信息获取与处理技术论文集[C].北京:中国建材工业出版社,1999.43~46.
  • 2[1]Marcus Stavos Stefanou, Richard c Olsen, Herschel H Loomis. Signal Perspectives of Hyperspectral Imagery Analysis Techniques[R], 1998, AD-A333 254.
  • 3[2]Dimitris Manolakis, Chrisitina Siracusa, David Marden, et al. Hyperspectral adaptive matched filter detectors:Practical performance comparison[J]. SPIE, 2001, 4381: 18-33.
  • 4[3]Joseph C Harsanyi, CheinI Chang. Hyperspectral image classifacation and dimensionality reduction: An orthogonal subspace projection approach[J]. IEEE Trans. On Geoscience and Remote sensing, 1994, 32(4): 779-785.
  • 5[4]Schaum A. Spectral subspace matched filtering[J]. SPIE, 2001, 4381: 1-17.
  • 6[5]David Gillis, Peter Palmadesso, Jeffrey Bowles. An automatic target recognition system for hyperspectral imagery using ORASIS[J]. SPIE, 2001, 4381: 34-43.
  • 7[6]Manolakis D, Shaw G. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(7): 29-43.
  • 8[7]Peter j Verveer, Robert P W Duin. An evaluation of intrinsic dimensionality estimators[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1995, 17(1): 81-85.
  • 9[8]Bruske J, Sommer G. Intrinsic dimensionality estimation with optimally topology preserving maps[J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 1998, 20(5): 572-575.

共引文献39

同被引文献60

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部