期刊文献+

近红外显微图像的主成分法图像处理 被引量:2

The application of principle component analysis(PCA)to near infrared microscopy imaging process
下载PDF
导出
摘要 介绍主成分分析算法在近红外显微图像分析中的应用,用该方法成功地提取出样品成分相关特征信息,并通过不同主成分的得分图像来描述样品的显微结构特征和特定化学成分分布。 This article introduces principle component analysis (PCA) arithmetic used in near infrared microscopy imaging technique for information extracting. The chemical component information can be extracted by this method from chicken breast muscle sample. The score images of different principle components are obtained and show the microstructure and protein distribution of the sample.
出处 《现代仪器》 2009年第5期38-40,共3页 Modern Instruments
基金 国家自然科学基金赞助项目 基金号:20575076
关键词 近红外显微成像 主成分分析 化学成像 鸡胸部肌肉 Near-infrared microscopy Principle component analysis Chemical imaging Chicken breast muscle
  • 相关文献

参考文献9

二级参考文献62

共引文献655

同被引文献74

  • 1高国龙.用近红外成像技术检测硅晶片中的裂纹[J].红外,2006,27(3):46-47. 被引量:1
  • 2苏星,田维坚,张淳民.显微成像光谱仪技术的研究及应用[J].光学技术,2006,32(6):820-823. 被引量:9
  • 3Lopes M. B., Wolff J. C. Investigation into classification/sourcing of suspect counterfeit Heptodin^TM tablets by near infrared chemical imaging. Analytica Chimica Acta, 2009, 633:149-155.
  • 4Lopes M. B., Wolff J. C., Bioucas-Dias J. M., Figueiredo M. T. Near-Infrared hyperspectral unmixing based on a Minimum Volume Criterion for fast and accurate chemometric characterization of counterfeit tablets. Anal. Chem., 2010, 82:1462-1469.
  • 5Tsuta M., Sugiyama J., Sagara Y. Near-infrared imaging spectroscopy based on sugar absorption band for melons. Journal of Agricultural and Food Chemistry. 2002, 50:48-52.
  • 6Ariana D. P., Lu R, Guyer D. Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Computers and Electronics in Agriculture, 2006, 53:60-70.
  • 7Zou X. B., Zhao J. W., Holmes M, Mao H. P., Shi J. Y., Yin X. P., Li Y. X. Independent component analysis in information extraction from visible/near-infrared hyperspectral imaging data of cucumber leaves. Chemometrics and Intelligent Laboratory Systems, 2010, 104:265-270.
  • 8Li J. B., Rao X. Q., Ying Y. B. Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 2011, 78:38-48.
  • 9Fernandes A. M., Oliveira P., Moura J. P., Oliveira A. A. Determination of anthocyanin concentration in whole grape skins using hyperspectral imaging and adaptive boosting neural networks. Journal of Food Engineering, 2011, 105:216--226.
  • 10ElMasry G, Wang N, EISayed A, Ngadi M. Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. Journal of Food Engineering, 2007, 81:98-107.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部