期刊文献+

具有时滞脉冲的Gompertz污染模型的持续性 被引量:4

Persistence of Gompertz Systems in a Polluted Enyiroment with Impulsive Effect and Delay
下载PDF
导出
摘要 讨论了具有周期脉冲毒素输入和时滞影响的Gompertz污染模型,给出了该系统持续生存的条件. We investigate Gompertz systems in a polluted environment with impulsive toxicant input and time delay. We obtain the condition for permanence of the population.
出处 《鞍山师范学院学报》 2009年第4期13-15,共3页 Journal of Anshan Normal University
关键词 污染模型 毒素脉冲 时滞 持续生存 Environmental pollution Impulsive toxin input Time delay Permanence
  • 相关文献

参考文献4

  • 1B Liu, L Chen, Y Zhang. The effects of impulsive toxicant input on a population in a polluted environment [ J ]. J Biol Syst, 2003,11:265-274.
  • 2Y Xiao, L Chen. How do the spatial structure and time delay affect the persistence of a polluted species [ J ]. Applicable Anal- ysis,2003,82(3 ) :253-267.
  • 3Debasis Mukherjee. Persistence and global stability of a population in a polluted environment with delay [ J ]. J Biol Syst, 2002,10:225-232.
  • 4X Meng, L Chen. Permanence and global stability in an impulsive Lotka-Volterra N-Species competitive system with both discrete delay and continuous delays[ J]. International Journal of Biomathematies ,2008,1 (2) :179-196.

同被引文献20

  • 1C W Clark. Mathematical Bioeconomics [ M ]. New York : Wiley, 1990.
  • 2Kuang Yang. Delay differential equation with Application in population dynamics[ M ]. New York: Academic Press, 1987.
  • 3V Lakshmikantham, D D Bainov, P Simeonov. Theory of impulsive differential equations [ M ]. Singapor: World scientific,1989.
  • 4Jiao Jianjun,Pang Guoping, Chen Lansun, et al. A delayed stage-structured predator-prey model with impulsive stocking on prey and continuous harvesting on predator [ J ]. Applied Mathematics and Computation,2008,195 ( 1 ) : 316-325.
  • 5Jiao Jianjun,Chen Lansun. Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators [ J ]. International Journal of Biomathematics, 2008,1 (2) : 197-208.
  • 6Jiao J, Yang X, Chen L, et al. Effect of delayed response in growth on the dynamics of a chemostat model with impulsive input [ J]. Chaos,Solitons and Fraetals ,2009,42:502-513.
  • 7Bainov D D, Simeonov P S. Impulsive Differential Equations: Asymptotic Properties of the Solutions[M]. Singapore: World Scientific, 1995.
  • 8Liu B,Chen L S, Zhang Y J. The Effects of Impulsive Toxicant Input on a Population in a Polluted Environment[J]. Journal of Biological Systems, 2003,11 (3) : 265-274.
  • 9Shi R,Jiang X,Chen L. A predator-prey Model with Disease in the Prey and Two Impulses for Integrated Pest Management[J] Mathematical Modelling, 2009,33 (5) : 2 248-2 256.
  • 10Zhao M,Wang X, Yu H,et al. Dynamics of an Ecological Model with Impulsive Control Strategy and Distributed Time Delay[J]. Mathe- matics and Computers in Simulation,2012,82(8):1 432-1 444.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部