期刊文献+

基于小波网络的水下机器人故障诊断研究 被引量:1

Study on the fault diagnosis for underwater robots based on wavelet neural network
下载PDF
导出
摘要 由于水下机器人系统的复杂性、不确定性及强非线性等使得对其建模异常困难,采用一种最小调整的小波神经网络对其进行运动建模以获得理想的建模效果.通过该网络的自学习,调节小波函数的伸缩因子与平移因子以及网络连接权值,既能以任意精度逼近函数的整体轮廓,也能捕捉函数的变化细节,使得函数的逼近效果较好.对比模型的输出与实际传感器测量值来生成残差,通过分析残差特性来提取故障诊断判据,进而完成推进器故障诊断.完成了推进器故障诊断的仿真试验,仿真结果验证了该方法的有效性和可行性. It is very difficult to model the system because of the complexity,uncertainties and strong nonlinearity of underwater robots.In order to make the modeling perfect,a wavelet neural network based on the least adjustment is applied.The adjustment of the scale factors and shift factors of wavelet and weights of WNN is studied.The WNN has the ability not only to approach the whole figure of a function at high accuracy but also to catch detail changes of the function,which makes the approaching effect preferably.Residuals are acquired by comparing the output of neural network with the sensor output.Fault diagnosis criteria are distilled from the residuals to execute thruster fault diagnosis.The simulation trials for thruster fault diagnosis are finished.The validity and feasibility of the method presented are verified by simulation results.
出处 《船舶工程》 CSCD 北大核心 2009年第B09期124-127,130,共5页 Ship Engineering
基金 国家863计划基金资助项目(2008AA092301-2) 哈尔滨工程大学基础研究基金资助(HEUFT08017 HEUFT08001)
关键词 水下机器人 推进器故障 故障诊断 小波神经网络 underwater robots thruster faults fault diagnosis wavelet neural network(WNN)
  • 相关文献

参考文献3

二级参考文献38

  • 1周小勇,叶银忠.基于Mallat塔式算法小波变换的多故障诊断方法[J].控制与决策,2004,19(5):592-594. 被引量:14
  • 2[1]Elman J L. Finding structure in time [J]. Cognitive Science, 1990,14(2):179-211
  • 3[2]Scott G M and Ray W H. Creating efficient nonlinear network process models that allow model interpretation [J]. J. Process Control, 1993,3(3):163-178
  • 4[3]Pham D T and Oh S J. A recurrent backpropagation neural network for dynamical system identification [J]. Journal of Systems Engineering, 1992,2(4):213-223
  • 5[4]Funahashi K. On the approximate realization of continuous mappings by neural networks [J]. Neural Networks,1989,2(3):183-192
  • 6[5]Hirsch M W and Smale S. Differential equations, dynamical systems and linear algebra [M]. San Diego: Academic Press,1974
  • 7[6]Sales K R and Billings S A. Self_tuning control of nonlinear ARMAX models [J]. Int. J. Control, 1990,51(4):753-769
  • 8Mallat S, Hwang W L. Singularity detection and processing with wavelet [J]. IEEE Trans. Information Theory, 1992, 38(2): 617-643.
  • 9Battiti R. First and second-order methods for learning: between steepest descent and Newton's method [J]. Neural computation, 1992, 4(2): 141-166.
  • 10Wiggins S.Introduction to apphed nonlinear dynamical systems and chaos[M].New York:Springer-Vedag,1990.

共引文献55

同被引文献14

  • 1王玉甲,张铭钧.基于模糊神经网络的水下机器人实时状态监测模型[J].中国造船,2005,46(1):71-79. 被引量:5
  • 2OMERDIC E, ROBERTS G. Thruster fault diagnosis and accommodation for open-frame underwater vehicles[J]. Control Engineering Practice, 2004, 12: 1575-1598.
  • 3HANAI A M, CHOI S K, MARANI G, et al. Experimental validation of model-based thruster fault detection for underwater vehicles[C]//2009 IEEE International Conference on Robotics and Automation. May 12-17, 2009, Kobe, Japan. 2009: 194-199.
  • 4WANG Jianguo, WU Gongxing, WAN Lei, et al. Recurrent neural network applied to fault diagnosis of underwater robots[C]//2009 IEEE Intemational Conference on Intelligent Computing and Intelligent Systems, November 20-22, 2009, Shanghai, China. 2009: 593-598.
  • 5LIANG Xiao, LI Wei, SU Linfang, et al. Thruster fault diagnosis of autonomous underwater vehicles based on least disturbance wavelet neural network[C]// 2010 Second International Conference on Computer Modeling and Simulation. January 20-24, 2010, Sanya, China. 2010: 78-82.
  • 6JULIER S, UHLMANN J, DURRANT-WHYTE H E A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. Automatic Control, 2000, 45(3): 477-482.
  • 7VANDER M R, WAN E A. The square-root unscented Kalman filter for state and parameter estimation[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. May 7-11, 2001, Salt Lake city, UT, USA. 2001: 3461-3466.
  • 8SONG Qi, JIANG Zhe, HAN Jianda. Active model based fault tolerant control against actuator failures for mobile robot[C]//The Sixth World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China. 2006: 1415-1420.
  • 9VANDER M R, WAN E A. Gaussian mixture sigma-point particle filters for sequential probabilistic inference in dynamic state-space models[C]//2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. April6-10, 2003, HongKong, China. 2003: 701-703.
  • 10齐俊桐,韩建达.基于MIT规则的自适应Unscented卡尔曼滤波及其在旋翼飞行机器人容错控制的应用[J].机械工程学报,2009,45(4):115-124. 被引量:11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部