期刊文献+

基于分级代理的智能家庭网络模型研究 被引量:1

Research on intelligent home network model based on multi-level agents
下载PDF
导出
摘要 针对现有家庭网络中智能设备不能有效学习家庭用户习惯,致使不能满足用户的个性化服务质量的问题,给出了一种基于分级代理的智能家庭网络模型。首先给出了一种智能家庭网络设备的形式化描述,以此为基础提出了分级代理的智能家庭网络模型:全局Agent通过对家庭中的长期数据进行学习,总结出一定的服务规则,指导设备A^et根据家庭成员的生活习惯改变工作方式;设备Agent利用强化学习算法,自主学习,解读家庭环境的状态变化,并做出最优选择。该模型的应用实例及仿真结果表明,应用此模型,设备可以学习用户习惯,为用户提供个性化服务。 This paper presents an intelligent home network model based on multi-level agents to solve the problem that the existing intelligent devices in home networks can not study users' habits efficiently so that they can not satisfy users' personalized QoS. A formal description for devices in intelligent home networks is given before the model is established. The overall agent in an intelligent home network summarizes the rules of service through the study of the long-term data of the family, which guide the work of equipment agents according to the life habits of the family. The equipment agents learn and detect the change of the family environments automatically and make the optimal choices using the reinforcement learning algorithms. An application scene of the multi-level agent model and the simulation result show that, by applying this model, the devices can study the habits of the user and provide personalized service to the user.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2009年第9期919-925,共7页 Chinese High Technology Letters
基金 863计划(2007AA01Z238)资助项目。
关键词 智能家庭网络 强化学习 多级代理 intelligent home network, reinforcement learning, multi-level agents
  • 相关文献

参考文献12

二级参考文献43

  • 1万亚红,黄樟钦,陈旭辉,霍囝囝.基于主动推理的情境感知系统框架[J].计算机工程,2004,30(12):8-9. 被引量:18
  • 2叶俊,刘贤德,韩露.基于多主体的楼宇智能控制体系结构[J].计算机工程与应用,2004,40(19):203-205. 被引量:3
  • 3韩江洪,江波,杜诗研,张利.一种基于多Agent系统的智能家庭网络研究[J].电子科技大学学报,2005,34(2):233-235. 被引量:6
  • 4邱慧敏,杨义先,胡正名.一种改进的基于智能卡的身份鉴别方案设计[J].北京邮电大学学报,2005,28(2):39-41. 被引量:3
  • 5[1]BARTO A G,MAHADEVAN S.Recent advances in hierarchical reinforcement learning[J].Discrete Event Dynamic Systems:Theory and Applications,2003,13(4):41-77.
  • 6[2]SUTTON R S,PRECUP D,SINGH S P.Between MDPs and semi-MDPs:a framework for temporal abstraction in reinforcement learning[J].Artificial Intelligence,1999,112(1):181-211.
  • 7[3]PARR R.Hierarchical control and learning for Markov decision processes[D].Berkeley:University of California,1998.
  • 8[4]DIETTERICH T G.Hierarchical reinforcement learning with the MAXQ value function decomposition[J].Journal of Artificial Intelligence Research,2000,13(1):227-303.
  • 9[5]DIGNEY B L.Learning hierarchical control structures for multiple tasks and changing environments[A].Proc of the 5th International Conference on Simulation of Adaptive Behavior[C].Zurich,Switzerland,1998.
  • 10[6]MCGOVERN A,BARTO A.Autonomous discovery of subgoals in reinforcement learning using diverse density[A].Proc of the 8th International Conference on Ma chine Learning[C].San Fransisco:Morgan Kaufmann,2001.

共引文献286

同被引文献12

  • 1Vaidya B, Park J H, Yeo S S, et al. Robust one-time password authentication scheme using smart card for home network environment [J]. Computer Communications, 2011, 34 (3): 326-336.
  • 2Miguel V, Cabrera J, Jaureguizar F, et al. Distribution of high- definition video in 802. 11 wireless home networks [J]. IEEE Transactions on Consumer Electronics, 2011, 57 (1): 53-61.
  • 3Brennan R, Lewis D, Keeney J, et al. Policy-based integra- tion of multiprovider digital home services [J]. Network, IEEE, 2009, 23 (6): 50-56.
  • 4Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing [C]//New York: Proc of the !EEE International Conf on Computers, System and Signal Processing, 1984: 175-179.
  • 5Ekert A K. Quantum cryptography based on bell's theorem [J]. Phys Rev Lett, 1991, 67 (6): 661-663.
  • 6Bennett C H. Quantum cryptography using any two nonorthogonal states [J]. Phys Rev Lett, 1992, 68 (21): 3121-3124.
  • 7Zhang Y, Wang Y, Xiao X, et al. Quantum network teleportation for quantum information distribution and concentration [J]. Physical Review A, 2013, 87 (2): 22302.
  • 8Ma Hongyang, Chen Bingquan, Guo Zhongwen, et al. Development of quantum network based on multiparty quantum secret sharing [J]. Can J Phys, 2008, 86 (9): 1097-1101.
  • 9Dong Pyo Chi, Jeong Woon Choi, Jeong San Kim, et al. Three-party d level quantum secret sharing protocol [J]. J PhysA: Math Theor, 2008, 41 (25): 255309.
  • 10Woodhead E, Pironio S. Effects of preparation and measurement misalignments on the security of the Bennett-Brassard 1984 quantum-key-distribution protocol[J]. Physical Review A, 2013, 87 (3): 32315.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部