期刊文献+

奇特征正交空间上可检错Pooling设计的构作 被引量:1

Constructions of Pooling Designs with Error-detecting in the Finite Orthogonal Space of Odd Characteristic
下载PDF
导出
摘要 Pooling设计的数学模型是一个d-disjunct矩阵.利用奇特征正交空间中全迷向子空间构作了d-disjunct矩阵,并通过计算它的Hamming距离分析了它的检纠错能力,根据Kautz-Singleton定理对d的范围作了估算. The mathematical model of pooling designs is a d-disjunct matrix. The d-disjunct matrix is constructed by totally isotropic subspaces in finite orthogonal spaces of odd characteristic ,and its error-correcting and error-detecting capability is analyzed by calculating its Hamming distance. The range of d is estimated by Kautz-Singleton theorem.
出处 《湖南理工学院学报(自然科学版)》 CAS 2009年第3期16-18,共3页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 河北省自然科学基金(A2005000141) 张家口市级开发项目(0701017B)
关键词 奇特征正交空间 全迷向子空间 POOLING设计 D-DISJUNCT矩阵 HAMMING距离 检错 纠错 finite orthogonal space of odd characteristic totally isotropic subspace pooling design d-disjunct matrix Hamming distance error-detecting error-correcting
  • 相关文献

参考文献7

  • 1Ta-yuan Huang,Chih-wen Weng.Pooling spaces and non-adaptive pooling designs[J].Discrete Mathematics,2004,282:163-169.
  • 2F K.Hwng.Note on macula's error-correcting pooling designs[J].Discrete Mathemtics,2003,268:311-314.
  • 3H G.Yeh.d-Disjunct matrices:bounds and lovasz local lemma[J].Discrete Mathematices,2002,253:97-107.
  • 4A J.Macula.Nonadaptive group testing with error resistant d-disjunct matrices[J].Discrete Applied Mathematics,1998,80:217-282.
  • 5Ding-Zhu Du,F K.Hwang.Combinatorial group testing and its applications[M],World Scientific,Singapore,2000.
  • 6Z.X Wan.Geometry of classical groups over finite fields(Second Edition)[M].Beijing:Science Press,2006.
  • 7W H.Kautz,R R.Singleton.Nonrandom binary superimposed codes[J].IEEE Trans.Inform.1964,10:363-377.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部