期刊文献+

以吡啶和葡萄糖为燃料的MFC产电特性研究 被引量:3

Power Generation from Pyridine and Glucose Using Microbial Fuel Cell
原文传递
导出
摘要 不同类型的有机物对MFC的产电性能有不同的影响,通过构建填料型MFC,以吡啶和葡萄糖为混合燃料,以铁氰化钾为电子受体,对有机物在MFC中的降解以及产电性进行研究.结果表明,外阻为1 000Ω的条件下,MFC的最大输出电压随着葡萄糖浓度的降低而降低,当吡啶初始浓度为500 mg/L,葡萄糖浓度分别为500、250、100 mg/L时,运行周期逐渐缩短,分别为49.5、25.7、25.2 h;最大体积功率密度为48.5、36.2、15.2 W/m3,最高电压为623 mV.MFC可实现对吡啶的高效降解,24h内吡啶去除率高达95%,但葡萄糖的浓度对吡啶的降解速率影响不大;高浓度吡啶存在的条件下对MFC利用葡萄糖产电的性能影响不大.利用500 mg/L单一吡啶作为MFC的燃料时,无明显产电现象.MFC利用吡啶和葡萄糖作为混合燃料时,可以在实现吡啶降解的同时稳定地向外输出电能. Different organics have different effects on the power generation of microbial fuel cell.A packing-type MFC was constructed to investigate organic matter degradation and power generation.Experiments were conducted using an initial pyridine concentration of 500mg/L with different glucose concentrations(500,250,and 100mg/L) as the MFC fuel.Results showed that maximum voltages decreased with the decrease of concentration of glucose and the maximum voltage was 623 mV.The cycle time were 49.5,25.7,25.2 h respectively.Correspondingly,the maximal volumetric power densities were 48.5,36.2,15.2W/m^3.Pyridine removal rate reached 95% within 24 h using MFC,which was not affected by concentration of glucose.Power generation using glucose was not affected in the presence of high concentration of pyridine. However,the phenomenon of electricity production was not obvious when using 500mg/L pyridine as sole fuel.The results clearly demonstrated the feasibility of using the MFC to generate electricity when using pyridine and glucose mixture as fuel and simultaneously enhanced pyridine degradation.
出处 《环境科学》 EI CAS CSCD 北大核心 2009年第10期3089-3092,共4页 Environmental Science
基金 国家自然科学基金项目(50608070,50779080) 广东省环境污染控制与修改技术重点试验室开发基金项目(2006K0007) 环境模拟与污染控制国家重点联合实验室专项基金项目(08K02ESPCT)
关键词 微生物燃料电池 吡啶 降解 产电性能 microbial fuel cells (MFC) pyridine biodegradation power generation
  • 相关文献

参考文献25

  • 1Leenheer J A, Noyes T I, Stuber H A. Determination of polar organic solutes in oil-shale retort water [ J]. Environ Sci Technol, 1982, 16:714-723.
  • 2Ronen Z, Bollag J M. Biodegradation of pyridine and pyridine derivatives by soil and subsurface microorganisms[ J]. Int J Environ Anal Chem, 1995, 59:133-143.
  • 3Kim B H, Kim H J, Hyun M S, et al. Direct electrode reaction of Fe( Ⅲ )-reducing bacterium, Shewanella putrefaciens [ J]. Microbiol Biotechnol, 1999, 9: 127-131.
  • 4Reimers C E, Tender L M, Ferig S, et al. Harvesting energy from the marine sediment-water interface [ J]. Environ Sci Technol, 2001, 35:192-195.
  • 5Bond D R, Lovely D R, Electricity production by Geobacter sulfurreducens attached to electrodes [ J ]. Appl Environ Microb, 2003, 69: 1548-1555.
  • 6Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency [J]. Biotechnology Letters, 2003, 25: 1531-1535.
  • 7Chaudhufi S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel ceils [ J ]. Nat Biotechnol, 2003, 21: 1229-1232.
  • 8Liu H, Cheng S,, Logan B E. Production of electricity from acetate or butyrate in a single chamber microbial fuel cell [ J]. Environ Sci Technol, 2005, 39:658-662.
  • 9范明志,梁鹏,曹效鑫,黄霞.阳极初始电势对微生物燃料电池产电的影响[J].环境科学,2008,29(1):263-267. 被引量:13
  • 10Catal T, Fan Y, Li K, et al. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells [J]. J Power Sources, 2008a, 180: 162-166.

二级参考文献58

共引文献62

同被引文献57

  • 1林乔元,罗松年.CTMP废水厌氧生物可处理性和对产甲烷菌毒性的研究[J].中国造纸,1995,14(6):6-11. 被引量:11
  • 2曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257. 被引量:66
  • 3国家环境保护局.水和废水监测分析方法[M].(第三版).北京:中国环境科学出版社,1989.88-284.
  • 4He Z, Spain J C. Comparison of the downstream pathways for degradation of nitrobenzene by Pseudomonas pseudoalcliigenes JS45 (2-aminophenol pathway) and by Comamonas sp. JS765 (catechol pathway) [J]. Archives of Microbiology, 1999, 171 : 309-316.
  • 5Liu Z, Yang H, Huang Z, et al. Degradation of aniline by newly isolated, extremely aniline-tolerant Delfiia sp. AN3 [ J ]. Applied Microbiology and Biotechnology, 2002, 58: 679-682.
  • 6Li Y P, Cao H B, Liu C M, et al. Electrochemical reduction of nitrobenzene at carbon nanotube electrode [J]. Journal of Hazardous Materials, 2007, 148: 158-163.
  • 7Kim B H, Park H S, Kim H J, et al. Enrichment of microbial community generating electricity using a fuel cell type electrochemical cell [ J ]. Applied Microbiology and Biotechnology, 2004, 63: 672-681.
  • 8Rabaey K, Lissens G, Siciliano S D, et al. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency [J]. Biotechnology Letters, 2003, 25 : 1531-1535.
  • 9Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell [ J]. Environmental Science & Technology, 2005, 39: 658- 662.
  • 10Ren Z, Ward T E, Regan J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture [J]. Environmental Science & Technology, 2007, 41: 4781- 4786.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部