期刊文献+

实例驱动的自适应本体学习 被引量:2

Instances driven adaptive ontology learning
下载PDF
导出
摘要 针对知识管理中本体构建存在的问题,将聚类算法与ODP(Open Directory Project)目录有机结合,给出了一种基于知识资源元数据的自适应本体学习方法。根据元数据对文档进行聚类形成本体概念,将生成的概念分别映射到ODP中确定概念间的层次关系,生成初始本体;根据内聚性和相关性的变化进行自适应本体学习,实现本体更新和概念丰富,以及时跟踪知识的变化。提出的自适应本体学习方法能够很好地反映研究领域的演变过程和发展趋势,满足知识型组织进行知识管理和研究人员共享知识的需求。实验结果表明了方法的有效性。 To solve problems in knowledge management,an adaptive ontology learning approach based on metadata of knowledge resources is proposed by integrating clustering algorithm and ODP (Open Directory Project).Ontology concepts are generated by clustering documents based on their metadata,and concept hierarchy is formed based on the hierarchy of mapped concepts in ODP.In order to track the changes in knowledge,adaptive ontology learning is conducted to update the ontology and enrich ontology concepts based on the changes of cohesion and correlation of clusters.The adaptive ontology learning approach proposed in this paper can reflect evolution process and tendency in research area,and meet demands for knowledge management of knowledge organization and knowledge sharing of researchers.Experimental result demonstrates the validity of the approach.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第28期31-34,共4页 Computer Engineering and Applications
基金 天津市科技发展计划资助项目(No06YFGZGX05900)
关键词 知识管理 本体学习 开放式目录项目 聚类 knowledge management ontology learning Open Directory Projec(tODP) clustering
  • 相关文献

参考文献8

  • 1徐丽平,姜利群,赵亮.基于本体的知识管理系统研究[J].电脑应用技术,2007(2):1-4. 被引量:6
  • 2张晓林.Semantic Web与基于语义的网络信息检索[J].情报学报,2002,21(4):413-420. 被引量:119
  • 3Khan L,Luo Feng.Ontology construction for information selection[C]// Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence(ICTAI'02),2002: 122.
  • 4Zhou L P,Zhang D F,Chen X,et al.A method for semantics- based conceptual expansion of ontology[C]//Proceedings of the 15th Annual Workshop on Selected Areas in Cryptography,2008.
  • 5Quan T T,Hui S C,Cao T H.Automatic fuzzy ontology generation for semantic web[J].IEEE Transactions on Knowledge and Data Engineering, 2006, 18 (6) : 842-856.
  • 6宋峻峰,张维明,肖卫东,唐九阳.基于本体的信息检索模型研究[J].南京大学学报(自然科学版),2005,41(2):189-197. 被引量:44
  • 7Chen Yi-fan,Xue Gui-rong,Yu Yong.Advertising keyword suggestion based on concept hierarchy[C]//Proceedings of ACM WSDM 2008, Stanford University, Stanford, California, USA, 2008.
  • 8Kushilevitz E,Ostrovsky R,Rabani Y.Efficient search for approximate nearest neighbor in high dimensional spaces[J].SIAM Journal on Computing, 2000,30(2) : 451-474.

二级参考文献21

  • 1Gruber T R.A translation approach to portable ontologies.Knowledge Acquisition,1993,5(2):199~220.
  • 2Stuart R,Peter N.Artificial intelligence:A modern approach.Beijing:Pearson Education North Asia Limited and People’S Posts and Teleeommunications Press,2002,229-231.
  • 3Nilsson N J.Artificial intelligence:A new synthesis.Beijing:Claim Machine Press and Morgan Kaufmann Publishers,Inc,1999,215-316.
  • 4Gruber T R. Towards principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studies, 1995,907-928.
  • 5Franz B, Deborah McG, Daniele N, et al. The description logic handbook: Theory, implementation and applications. Cambridge, UK: Cambridge University Press, 2003, 1-100, 436-459.
  • 6Baader F, Hanschke P. A scheme for integrating concrete domains into concept languages. Proceedings of IJCAI-91, 1991: 452-457.
  • 7Baader F, Sattler U. Description logics with aggregates and concrete domains. Information Systems,2003, 28(8) : 979-1004.
  • 8Horrocks I, Sattler U, Tobies S. Practical reasoning for expressive description logics. Ganzinger H,McAllester D, Voronkov A. Proceedings of LPAR' 99, number 1705 in LNAI, Springer-Verlag, 1999: 161-180.
  • 9Horroeks I, Sattler U, Tobies S. Practical reasoning for very expressive description logics. Logic Journal of the IGPL, 2000, 8(3): 239-264.
  • 10Horrocks I, Sattler U. Ontology reasoning in the SHOQ(D) description logic. Proceedings IJCAI01, 2001: 199-204.

共引文献166

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部