期刊文献+

强社会认知能力的粒子群优化算法 被引量:3

Particle Swarm Optimization algorithm with abundant social cognition
下载PDF
导出
摘要 针对粒子群优化算法的"早熟"问题,提出了强社会认知能力粒子群优化算法,该算法通过学习概率和选择概率确定粒子跟踪的局部极值。算法中学习概率的自适应调整有效权衡了粒子的个体认知能力和社会认知能力。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。 A particle swarm optimization with abundant social cognition is developed for solving premature convergence of particle swarm optimization.In this algorithm,the optimum from the particles experiments is determined by learning probability and selective probability.The learning probability is adjusted to balance between personal cognitive and social cognitive.Experimental results for complex function optimization show this algorithm improves the global convergence ability and efficiently prevents the algorithm from the local optimization and early maturation.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第28期69-71,共3页 Computer Engineering and Applications
基金 国家自然科学基金No70771708~~
关键词 粒子群优化算法 学习概率 选择概率 Particle Swarm Optimization(PSO) learning probability selective probability
  • 相关文献

参考文献7

  • 1Kennedy J Eberhart R C.Particle swarm optimization[C]//Proc in IEEE International Conference on Neural Networks,Perth,Australia, 1995 : 1942-1948.
  • 2del Valle Y,Venayagamoorthy G K,Mohagheghi S.Particle swarm optimization: Basic concepts,variants and applications in power systems[J].IEEE Transactions on Evolutionary Computation,2008, 12(2) : 171-195.
  • 3Ratnaweera A,Halgamuge S K,Watson H C.Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J].IEEE Transactions on Evolutionary Computation,2004,8 (3) : 240-255.
  • 4Kennedy J,Mendes R.Population structure and particle swarm performance[C]//Proc IEEE Congr Evol Comput, Honolulu, HI, 2002 : 1671-1676.
  • 5Suganthan P N.Particle swarm optimizer with neighborhood operator[C]//Proc Congr Evol Comput, Washington, DC, 1999 : 1958-1962.
  • 6Angeline P J.Using selection to improve particle swarm optimizatlon[C]//Proc IEEE Congr Evol Comput,Anchorage,AK, 1998.84-89.
  • 7Lovbjerg M, Rasmussen T K,Krink T.Hybrid particle swarm optimizer with breeding and subpopulations[C]//Proc Genetic Evol Comput Conf, 2001:469-476.

同被引文献25

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 2van der Merwe D W,Engelbrecht A P.Data clustering using particle swarm optimization[C]//Proc of IEEE Congress on Evolutionary Computation,2003:215-220.
  • 3Zhang B, Hsu M.K-harmonic means-a data clustering algorithm, HP Technical Report HPL-2000-137[R].Hewlett-Packard Labs,2000.
  • 4Madeiro S S, Bastos-Filho C J A, Neto F B L, et al.Adaptative clustering particle swarm optimization[C]//IEEE International Symposium on Parallel & Distributed Processing,2009: 1-8.
  • 5Kennedy J, Eberhart R.PartMe swarm optimization[C]//Proc IEEE Int Conf Neural Networks, 1995 : 1942-1948.
  • 6Kennedy J, Eberhart R. Particle swarm optimizationEC] // Perth. International Conference on Neural Networks. Australia: IEEEE Press, 1995 : 1 942-1 948.
  • 7Horne J. A tasseled cap transformation for konos iraages[C]//Sydney. Proceedings of the 23re Annual Conference. Australia: IEEE Press,2003:768-772.
  • 8Vandern Bergh F, Engel Breehta P. Taining product unit networksusing Cooperative Particle Swarm Optimisers[-C]///Engerb- net Imternational Conference on Neural Networks, American: IEEE Press, 2001:126-131.
  • 9Cai Xingj uan, Tan Ying. Dispersed Particle Swarm Optimization[J]. Information Processing Letters, 2008,105 (6) : 231-235.
  • 10Ge Y. An emotional particle swarm optimization algorithm[C]//Berlin. Advances in Natural Computation Lecture Notes in Computer Science, German Springer, 2005 553-561.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部