期刊文献+

一种支持负载均衡的存储调度算法 被引量:1

A Scheduling Algorithm for Load Balance Sensitive Storage
下载PDF
导出
摘要 针对应用层存储聚合中的调度问题,提出了一种支持负载均衡的存储调度(LBS)算法.LBS是一种基于策略的调度算法,它将应用对存储资源的需求转换为一系列约束,再通过分析约束之间的关系选择合适的存储节点或者已有的调度方案,从而提高了调度方案的复用率,维护了策略复用与节点负载之间的平衡关系,寻找到最佳的负载均衡策略.模拟测试表明,LBS算法在负载均衡方面和策略耦合方面明显优于Least和Random算法,负载均衡指标最高可提升10倍左右. According to the scheduling problem in storage aggregating of application-level, a scheduling algorithm for load balance sensitive storage (LBS) is proposed based on policy. In the LBS algorithm, requirements from applications for storage are represented as a series of restrictions. The LBS then makes choice between new appropriate storage nodes and existing scheduling scenario by analyzing relations between restrictions so that the reusability of scheduler scenarios can be improved. The LBS maintains the balance between the reusability of policy and the load of storage, and achieves the goal of load balance finally. The simulation and comparisons show that the LBS outperforms the Random and the Least obviously in load balancing, policy decupling and scalability, and that the load balance of the LBS improves 10 times against the two baseline algorithms.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第10期61-65,共5页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2006AA01A106 2006AA01A124) 科技部国际合作项目(2006DFA11080) 欧盟IST资助项目(IST-2006-045609)
关键词 应用层存储聚合 调度算法 负载均衡 application-level storage aggregating schedule algorithm load balance
  • 相关文献

参考文献5

  • 1GANTZ J. The diverse and exploding digital universe:an updated forecast of worldwide information growth through 2011 [M]. Framingham, MA. USA: IDC, 2008.
  • 2胡周君,胡志刚,李林.一种基于性能评估的元任务调度算法[J].西安交通大学学报,2008,42(8):972-976. 被引量:9
  • 3MCNAB R, HOWELL F. Using java for discrete event simulation [C] // Proceedings of 12th UK Computer and Telecommunications Performance Engineering Workshop. Edinburgh, UK: UKPEW, 1996: 219- 228.
  • 4GABBER E, FELLIN J, FLASTER M, et al. Star fish: highly-available block storage [C] // Proceedings of the Freenix Track: 2003 USENIX Annual Technical Conference. San Antonio, Texas, USA: USENIX, 2003: 151-163.
  • 5CRAINICEANU A, LINGA P, MACHANAVAJJHALA A, et al. P-ring: an efficient and robust P2P range index structure [C]//Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM, 2007: 223- 234.

二级参考文献13

  • 1胡春明,怀进鹏,沃天宇,雷磊.一种支持端到端QoS的服务网格体系结构[J].软件学报,2006,17(6):1448-1458. 被引量:19
  • 2FOSTER I, KESSELMAN C, NICK M, et al. The physiology of the grid: an open grid services architecture for distributed systems integration [EB/OL]. [2006-12-10]. http://www, globus, org/research/papers/ogsa, pdf.
  • 3SUN Xianhe, WU Ming. Quality of service of grid computing: resource sharing[C]// 6th International Conference on Grid and Cooperative Computing. Los Alamitos, CA, USA.. IEEE Computer Society, 2007: 395-402.
  • 4FUJIMOTO N, HAGIHARA K. A comparison among grid scheduling algorithms for independent coarse-grained tasks [C] // Proceedings of the 2004 International Symposium on Applications and the Internet Workshops. Los Alamitios, CA, USA: IEEE Computer Society, 2004: 674-680.
  • 5TOPCUOGLU H, HARIRI S, WU M Y. Performance-effective and low-complexity task scheduling for heterogeneous computing[J]. IEEE Transactions on Parallel and Distributed Systems, 2002, 13 (3) : 260- 274.
  • 6DONG Fangpeng, AKL S G. An adaptive double-layer workflow scheduling approach for grid computing [C] //21st International Symposium on High Performance Computing Systems and Applications. Los Alamitos, CA, USA: IEEE Computer Society, 2007: 1-7.
  • 7WU Ming, SUN Xianhe. Grid harvest service: a performance system of grid computing [J]. Journal of Parallel and Distributed Computing, 2006, 66 (10) : 1322-1337.
  • 8ADZIGOGOV L, SOLDATOS J, POLYMENAKOS L. EMPEROR: an OGSA grid meta-scheduler based on dynamic resource predictions [J]. Journal of Grid Computing, 2005, 3(1):19-37.
  • 9GAO Zhan, LUO Siwei, DING Ding. A scheduling mechanism considering simultaneous running of grid tasks and local tasks in the computational grid [C]// 2007 International Conference on Multimedia and Ubiquitous Engineering. Los Alamitos, CA, USA: IEEE Computer Society, 2007: 1100-1105.
  • 10DONG Fangpeng, AKL S G. PFAS.. a resource performance-fluctuation-aware workflow scheduling algorithm for grid computing[C]//21st Parallel and Distributed Processing Symposium. Los Alamitos, CA, USA: IEEE Computer Society, 2007: 1-9.

共引文献8

同被引文献2

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部