摘要
构造了一类基于径向基函数插值思想的有限体积格式。依据ENO思想建立自适应模板,在选定的模板上利用Multiquadric函数逼近控制单元边界处的守恒变量,再构造高阶数值通量。对经典的一维和二维问题的数值模拟结果表明,这种格式具有高阶精度和高分辨率。
A kind of finite volume methods based radial basis function (RBF) is presented. The adaptive stencils are formed according to essentially non-oscillatory (EN0) method, then multiquadric radial basis function (MQRBF) is used to approximate the numerical flux terms on the adaptive stencils, Finally it is generalized to one and two dimensional problems of aerodynamics, and the numerical experiments show that it has high accuracy and resolution.
出处
《安徽工业大学学报(自然科学版)》
CAS
2009年第4期435-439,共5页
Journal of Anhui University of Technology(Natural Science)
基金
国家自然科学基金资助(10576015)
关键词
有限体积方法
径向基函数
ENO方法
插值多项式
MQ函数
finite volume method
radial basis function
ENO stencil
interpolation polynomials
multi-quadric