期刊文献+

径向基函数插值的有限体积方法 被引量:1

Finite Volume Method of Radial Basis Functions Interpolation
下载PDF
导出
摘要 构造了一类基于径向基函数插值思想的有限体积格式。依据ENO思想建立自适应模板,在选定的模板上利用Multiquadric函数逼近控制单元边界处的守恒变量,再构造高阶数值通量。对经典的一维和二维问题的数值模拟结果表明,这种格式具有高阶精度和高分辨率。 A kind of finite volume methods based radial basis function (RBF) is presented. The adaptive stencils are formed according to essentially non-oscillatory (EN0) method, then multiquadric radial basis function (MQRBF) is used to approximate the numerical flux terms on the adaptive stencils, Finally it is generalized to one and two dimensional problems of aerodynamics, and the numerical experiments show that it has high accuracy and resolution.
出处 《安徽工业大学学报(自然科学版)》 CAS 2009年第4期435-439,共5页 Journal of Anhui University of Technology(Natural Science)
基金 国家自然科学基金资助(10576015)
关键词 有限体积方法 径向基函数 ENO方法 插值多项式 MQ函数 finite volume method radial basis function ENO stencil interpolation polynomials multi-quadric
  • 相关文献

参考文献8

  • 1Hardy R L.Multiquadric equations of topography and other irregular surfaces[J].Journal of Geophysical Research,1971,176:1905-1915.
  • 2Harten A,Engquist B,Osher S,et al.Uniformly high order accurate essentially non-oscillatory schemes Ⅲ[J].Journal of Computational Physics,1987,71:231-303.
  • 3Shu C,Ding H,Yeo K S.Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier -Stokes equations[J].Computer Methods in Applied Mechanics and Engineering,2003,192:941-954.
  • 4Franke R.Scattored data interpolation:tests of some methods[J].Mathematics of Computation,1982,38:181-199.
  • 5Kanss E J.Multiquadrica-A scattered data approximation schemes with applications to computational fluid-dynamics-Ⅰ,Surface approximations and partial derivative estimates[J].Computers & Mathematics with Applications,1990,19(6-8):127-145.
  • 6Kanza E J.Multiquadrics-A scattered data approximation schemes with applications to computational fluid-dynamics-Ⅱ,Solutions to parabolic,hyperbolic,and elliptic partial differential equations[J].Computers & Mathematics with Applications,1990,19(6-8):147-161.
  • 7Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shook-capturing schemos[J].Journal of Computational Physics,1988,77:439-471.
  • 8Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shook-capturing schemes Ⅱ[J].Journal of Computational Physics,1989,83:32-78.

同被引文献10

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部