期刊文献+

Peridotite-melt interaction:A key point for the destruction of cratonic lithospheric mantle 被引量:36

Peridotite-melt interaction:A key point for the destruction of cratonic lithospheric mantle
原文传递
导出
摘要 This paper presents an overview of recent studies dealing with different ages of mantle peridotitic xenoliths and xenocrysts from the North China Craton, with aim to provide new ideas for further study on the destruction of the North China Craton. Re-Os isotopic studies suggest that the lithospheric mantle of the North China Craton is of Archean age prior to its thinning. The key reason why such a low density and highly refractory Archean lithospheric mantle would be thinned is changes in composition, thermal regime, and physical properties of the lithospheric mantle due to interaction of peridotites with melts of different origins. Inward subduction of circum craton plates and collision with the North China Craton provided not only the driving force for the destruction of the craton, but also continuous melts derived from partial melting of subducted continental or oceanic crustal materials that resulted in the compositional change of the lithospheric mantle. Regional thermal anomaly at ca. 120 Ma led to the melting of highly modified lithospheric mantle. At the same time or subsequently lithospheric exten- sion and asthenospheric upwelling further reinforced the melting and thinning of the lithospheric mantle. Therefore, the destruction and thinning of the North China Craton is a combined result of peridotite-melt interaction (addition of volatile), enhanced regional thermal anomaly (temperature increase) and lithospheric extension (decompression). Such a complex geological process finally produced a "mixed" lithospheric mantle of highly chemical heterogeneity during the Mesozoic and Cenozoic. It also resulted in significant difference in the composition of mantle peridotitic xenoliths between different regions and times. This paper presents an overview of recent studies dealing with different ages of mantle peridotitic xenoliths and xenocrysts from the North China Craton, with aim to provide new ideas for further study on the destruction of the North China Craton. Re-Os isotopic studies suggest that the lithospheric mantle of the North China Craton is of Archean age prior to its thinning. The key reason why such a low density and highly refractory Archean lithospheric mantle would be thinned is changes in composition, thermal regime, and physical properties of the lithospheric mantle due to interaction of peridotites with melts of different origins. Inward subduction of circum craton plates and collision with the North China Craton provided not only the driving force for the destruction of the craton, but also continuous melts derived from partial melting of subducted continental or oceanic crustal materials that resulted in the compositional change of the lithospheric mantle. Regional thermal anomaly at ca. 120 Ma led to the melting of highly modified lithospheric mantle. At the same time or subsequently lithospheric extension and asthenospheric upwelling further reinforced the melting and thinning of the lithospheric mantle. Therefore, the destruction and thinning of the North China Craton is a combined result of per- idotite-melt interaction (addition of volatile), enhanced regional thermal anomaly (temperature increase) and lithospheric extension (decompression). Such a complex geological process finally produced a "mixed" lithospheric mantle of highly chemical heterogeneity during the Mesozoic and Cenozoic. It also resulted in significant difference in the composition of mantle peridotitic xenoliths between different regions and times.
作者 ZHANG HongFu
出处 《Chinese Science Bulletin》 SCIE EI CAS 2009年第19期3417-3437,共21页
基金 Supported by National Natural Science Foundation of China (Grant Nos. 40534022 and 90714008) the Chinese Academy of Sciences (Grant No. KZCX2-YW-103)
关键词 橄榄岩 交互作用 稳定地块 地球科学 North China Craton, lithospheric mantle, peridotite-melt interaction, melt origin, destruction of the craton
  • 相关文献

参考文献11

二级参考文献81

共引文献311

同被引文献590

引证文献36

二级引证文献451

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部