期刊文献+

基于遗传神经网络的主机负载预测方法研究 被引量:2

Research on Host Load Prediction Based on Genetic Neural Network
下载PDF
导出
摘要 准确预测主机负载是实现高效动态负载均衡的关键,也是判断负载是否出现异常的重要依据。文章分析了采用时间序列方法进行主机负载预测的不足,提出了基于遗传神经网络的主机负载预测方法,建立了预测模型,并对模型进行了实验评估。 Predicting host load accurately is the key to achieve efficient load balancing,and it is also an important basis for judging whether there are abnormalities. The defects of time series method to predict host load are analyzed. The prediction method based on genetic neural network to predict host load is proposed and the prediction model is established. Also experimental assessment for the model is carried out.
出处 《计算机时代》 2009年第10期12-13,17,共3页 Computer Era
关键词 负载预测 时间序列 遗传神经网络 模型评估 load prediction time series genetic neural network model evaluation
  • 相关文献

参考文献2

二级参考文献18

  • 1Dinda P,O'Hallaron D.Host load prediction using linear models[J].Cluster Computing,2000,3(4):265-280.
  • 2Yin S Y,Lin X K.Adaptive load balancing in mobile Ad hoc networks[C]∥ Proceedings of IEEE Wireless Communications and Networking Conference.New Orleans,LA,USA:IEEE Press,2005:1982-1987.
  • 3Gong H H,Li C R,He J R.Boosting feed-forward neural network for internet traffic prediction[C]∥Proceedings of International Conference on Machine Learning and Cybernetics.Shanghai:IEEE Press,2004:3129-3134.
  • 4Khotanzad A,Sadek N.Multi-scale high-speed network traffic prediction using combination of neural networks[C]∥Proceedings of the International Joint Conference on Neural Networks.Oregon,USA:IEEE Press,2003:1071-1075.
  • 5Skicewicz J,Dinda P,Schopf J M.Multi-resolution resource behavior queries using wavelets[C]∥Proceedings of the 10th IEEE International Symposium on High Performance Distributed Computing.San Francisco,USA:IEEE Press,2001:395-405.
  • 6姚淑萍.主机负载预测方法及应用研究[D].北京:北京理工大学机电工程学院,2006.
  • 7Mallat S G.A theory for multiresolution signal decomposition:the wavelet representation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
  • 8Wu Chunhsin,Ho Janming,Lee D T,et al.Travel time prediction with support vector regression[J].IEEE Trans on Intelligent Transportation System,2004,5(4):276-281.
  • 9Hammer B,Gersmann K.A note on the universal approximation capability of support vector machines[J].Neural Processing Letters,2003,17:43-53.
  • 10Xue Zhenghua,Dong Xiaoshe,Wu Weiguo.AOC-MS:an adaptive and scalable monitoring system forlarge-scale clusters. IEEE Asia-Pacific Confer-ence on Services Computing . 2006

共引文献6

同被引文献19

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部