期刊文献+

生物发电浸出中黄铁矿阳极的交流阻抗 被引量:1

Anodic Oxidation of Pyrite in Bio-electro-generative Simultaneous Leaching by Alternating Current Impedance Technique
下载PDF
导出
摘要 文章采用双电池体系研究了生物发电浸出过程中黄铁矿阳极电极电位随时间的变化,并用电化学三电极体系研究了黄铁矿碳糊电极体系在氧化亚铁硫杆菌(A.f菌)中的界面过程,建立了黄铁矿生物发电浸出过程的模拟等效电路,通过交流阻抗分析软件对黄铁矿电极在不同电极电位下交流阻抗Nyquist图进行了拟合和分析。研究结果表明:反应初期黄铁矿阳极电极电势迅速增加,反应6小时后,阳极电极电势在0.6V附近趋于平稳;电极电势从0.4V增加到0.7V,A.f菌在黄铁矿表面都能氧化单质硫;电极电势为0.4V和0.5V时,微生物作用还不显著,黄铁矿浸出过程由电化学极化和浓差极化混合控制;电极电势为0.6V和0.7V时,黄铁矿浸出主要由生物电化学极化反应控制。 A dual cell system was used to study the relationships between the anodic pyrite potential and time for Bio-electro-generative simultaneous leaching (BEGL). A three-electrode system was adopted to study the interface dynamic behaviors of pyrite carbon paste electrodes in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans ). An equivalent circuit of the BEGL process was postulated based on the reactions of pyrite bio-electro-generative leaching. The alternating current impedance analysis software Z - View2 was used to fit and analysis Nyquist diagrams of pyrite anode under different initial electric potential. The results show that the anodic potential increases rapidly early in BEGL process, and reaches stable value about 0.6V ( vs. SCE) after 6hs. According to fit - result by Z - View2, the accumulated sulfur on the surface of ores could be oxidized by oxygen in promotion of A. ferrooxidans as the electric potential increased from 0.4V to 0.7V ( vs. SCE). The oxidization of sulfur is insignificant under electric potential 0.4 and 0.5V (vs. SCE) when the BEGL process of pyrite is controlled by electrochemistry and diffusion simultaneously. As the electrode potential increases to 0.6 and 0.7V ( vs. SCE), the BEGL process is controlled by electrochemistry.
出处 《湖南冶金职业技术学院学报》 2009年第3期1-4,7,共5页
基金 973计划资助项目(2004CB619204) 湖南省教育厅资助项目(07D069)
关键词 黄铁矿 生物氧化 交流阻抗 生物发电浸出 pyrite bio-oxidation alternating current impedance bio-electro-generative simultaneous leaching
  • 相关文献

参考文献6

二级参考文献32

共引文献8

同被引文献23

  • 1王玉明,季寿元,陈克荣.次显微金在黄铁矿和毒砂中的赋存状态新探讨[J].矿物学报,1994,14(1):83-87. 被引量:15
  • 2杨少华,杨凤丽,余新阳.难处理金矿石的细菌氧化机理及影响因素[J].湿法冶金,2006,25(2):57-60. 被引量:11
  • 3李海波,曹宏斌,张广积,张懿,方兆珩.细菌氧化浸出含金砷黄铁矿的过程机理及电化学研究进展[J].过程工程学报,2006,6(5):849-856. 被引量:19
  • 4刘云.黄铁矿氧化机理及表面钝化行为的电化学研究[D].广州:华南理工大学,2011. 1-37.
  • 5武彪,阮仁满,温建康,周桂英.黄铁矿在生物浸矿过程中的电化学氧化行为[J].金属矿山,2007,36(10):64-67. 被引量:17
  • 6孙小俊.黄铁矿微生物浸出及其电化学研究[D].长沙:中南大学,2010.36.
  • 7ZHU Tingting, LU Xiancai, LIU Huan, et al. Quantitative X-ray photoeleetron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferro- oxidans[J].Geochimica Et Cosmochimica Acta, 2014, 127 (4) :120-139.
  • 8MARQUEZ M A,OSPINA J D,MORALES A L. New in- sights about the bacterial oxidation of arsenopyrite:a min- eralogical scope[J]. Minerals Engineering, 2012,39 (12) : 248-254.
  • 9JONES R A, KOVAL S F, NESBITT H W. Surface alteration of arsenopyrite (FeAsS) by thiobacillus ferrooxidans[J].Geochimica Et Cosmochimica Acta,2003,67(5):955-965.
  • 10CRUZ R, LAZARO I, RODRIGUEZ J M, et al. Surface characterization of arsenopyrite in acidic medium by trian- gular scan voltammetry on carbon paste electrodes[J]. Hy- drometallurgy, 1997,46 (3) :303-319.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部