摘要
我们考虑了满足Clausius-Puhem不等式的一类二维Rivlin Ericksen流体。对于严格孤立的流体,我们证明了如果处于均衡时Helmhdtz自由能量非最小,则在一定条件下所有原始扰动不仅会放大而且会增加。这些结果推广了Fosclish Rajagopal在1982年得到的二维Rivlin Ericksen流体的一种特例—二等级流体的相关结果。
We consider the class of Rivlin Ericksen fluids of complexity 2 satisfying the Clausius-Duhem inequality. For strictly isolated fluids,we show that,if the Helmholtz free energy is not minimum in equilibrium,then the initial perturbation is (under some conditions) not only amplified,but also that it increases indefinitely. These results extend the analysis given by Fosdick Rajagopal in 1982 for the second grade fluids,which are a special case of Rivlin Ericksen fluids of complexity 2.
出处
《工程数学学报》
CSCD
北大核心
2009年第5期761-772,共12页
Chinese Journal of Engineering Mathematics