期刊文献+

无界区域上Stokes问题的自然边界元与Mini元耦合法

The Coupling of Natural Boundary Element and Mini Element for the Stokes Problem on Unbounded Domains
下载PDF
导出
摘要 本文讨论用自然边界元与mini元耦合法求解描述平面无界区域上不可压缩粘滞低速流动的定常Stokes问题。首先以圆为人工边界,利用自然边界归化将原问题转化为耦合变分问题,并证明该变分问题的存在唯一性,然后在人工边界上采用分段线性边界元,在有界区域上应用mini元分别进行离散化,合成总刚度矩阵,从而建立耦合法的线性方程组,最后,证明其收敛性和误差估计,并通过数值实验以表现该方法的实际有效性及其理论分析的正确性。 This paper investigates the coupling of natural boundary element and mini element for the steady Stokes problem,which describes the impressible viscous slow flow on the planar unbounded domains. The original problem is turned into a variational coupling problem by constructing an artificial boundary and using a natural boundary reduction,and its uniqueness and existence are proved. The piecewise linear boundary element on the artificial boundary and the mini element in the bounded domain are applied. The total stiffness matrix is combined. The coupling system of the linear equations is established, and its convergence and error estimate are proved. Finally, the Uzawa algorithm is used to solve this indefinite system of the linear equations, and the corresponding numerical experiments are carried out to show the practical effectiveness of the proposed method and the correctness of its numerical analysis.
出处 《工程数学学报》 CSCD 北大核心 2009年第5期866-874,共9页 Chinese Journal of Engineering Mathematics
基金 北京市自然科学基金(1072009) 国家重点基础研究发展计划项目(2002CB312104)
关键词 无界区域 STOKES问题 mini元 自然边界归化 误差估计 unbounded domain Stokes problem mini element natural boundary reduction error estimate
  • 相关文献

参考文献14

  • 1Girault V, Raviart P~A. Finite Element Methods for Navier-Stokes Equations[M]. Berlin: Springer-Verlag, 1986.
  • 2Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona: Springer-Verlag, 1991.
  • 3石东洋,陈绍春.Stokes问题的一个新的三角形Hermite型二阶格式[J].工程数学学报,2004,21(F12):116-120. 被引量:3
  • 4林甲富,林群.Stokes问题一种混合元近似的超收敛[J].工程数学学报,2004,21(3):325-329. 被引量:3
  • 5Sequeira A P. The coupling of boundary integral and finite element methods for the bidimensional exterior steady Stokes problem[J]. Math Meth Appl Sci, 1983, 5:356-357.
  • 6Hsiao G C, Kress R. On an integral equation for the two-dimensional exterior Stokes problem[J]. Appl Numer Math, 1985, 1:77-93.
  • 7Salim M, Sayas F-J. A fully discrete BEM-FEM for the exterior Stokes problem in the plane[J]. Society for Industrial and Applied Mathematics, 2000, 37:2082-2102.
  • 8Han H, Wu X. The mixed finite element methods for Stokes equations on unbounded domains[J]. J Sys Sci Math Scis, 1985, 5:121-132.
  • 9Han H, Bao W. The artificial boundary conditions for incompressible materials on an unbounded domain[J]. Numer Math, 1997, 77:347-363.
  • 10Bao W. Error bounds for the finite-element approximation of the exterior Stokes equations in two dimensions[J]. IMA J Numer Anal, 2003, 23:125-147.

二级参考文献26

  • 1林群,潘建华,周爱辉.Stokes问题的一种新的混合有限元逼近[J].系统科学与数学,1995,15(3):193-199. 被引量:12
  • 2余德浩,J Comput Math,1986年,4卷,1期,62页
  • 3祝家麟,计算数学,1986年,8卷,3期,281页
  • 4Han Houde,系统科学与数学,1985年,5卷,2期,121页
  • 5余德浩,1984年
  • 6冯康,1983年
  • 7余德浩,J Comput Math,1983年,1卷,3期,195页
  • 8余德浩,J Comput Math,1983年,1卷,1期,52页
  • 9应隆安,数学进展,1983年,12卷,2期,124页
  • 10Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms[M].Springer, 1986

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部