期刊文献+

基于光谱信息散度的光谱解混算法 被引量:5

Advanced spectral unmixing algorithm based on spectral information divergence
下载PDF
导出
摘要 光谱解混是高光谱遥感定量化的关键,提出了一种基于光谱信息散度和光谱混合分析的光谱解混改进算法(SID-SMA,Spectral Information Divergence-Spectral Mixed A-nalysis).以光谱信息散度判定最优端元子集,端元选择时采用端元的初选和二次选择来提高端元选择的精度,得到较小的丰度估计误差.通过光谱库模拟数据的结果可以看出,SID-SMA的端元选择精度和丰度估计精度要优于其他算法,当信噪比为100∶1时,算法端元选择正确率达到了99.8%,29个端元的丰度估计总误差小于0.1,并且算法的速度较快. Spectral unmixing is a key issue of quantitative remote sensing. An advanced spectral unmixing algorithm based on per-pixel optimal endmembers selection named spectral information divergence-spectral mixed analysis (SID-SMA) was proposed. It determined the optimal endmembers subset using the criteria of SID and selected endmembers through two selection steps which could improve the precision of endmember selection and obtain small abundance estimation error. The results of simulated data from spectral library indicate that SID-SMA has better precision of endmember selection and abundance estimation. When the signal-tonoise ratio (SNR) is 100: 1, the correct proportion of endmember selection arrives at 99.86% and total abundance error of 29 endmembers is less than 0.1 and the speed of SID-SMA is much faster.
作者 徐州 赵慧洁
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2009年第9期1091-1094,共4页 Journal of Beijing University of Aeronautics and Astronautics
基金 中国地质调查局资助项目(1212010816033) 国家863计划资助项目(2008AA121102) 长江学者和创新团队发展计划资助项目(IRT0705)
关键词 光谱解混 光谱信息散度 端元选择 丰度估计 spectral unmixing spectral information divergence endmember selection abundance estimation
  • 相关文献

参考文献11

  • 1赵慧洁,李娜,贾国瑞,董超.改进独立成分分析在高光谱图像分类中的应用[J].北京航空航天大学学报,2006,32(11):1333-1336. 被引量:6
  • 2Rogge D M, Rivard B, Zhang J K, et al. herative spectral unmixing for optimizing per-pixel endmember sets [ J ]. IEEE Transaction Geoscience Remote Sensing, 2006, 44 (12):3725 3736.
  • 3Boardman J W. Automating spectral unmixing of AVIRIS data using convex geometry concepts [ C ]//In Proceeding of Summary 4th Annual JPL Airborne Geoscience Workshop. [ S.;. ] : JPL Publication 93 -26, 1993,1:11 - 14.
  • 4Bateson A, Curtiss B. A method for manual endmember selection and spectral unmixing [ J]. Remote Sensing Environment, 1996, 55(3) :229 -243.
  • 5Winter M E. Fast autonomous spectral endmember determination in hyperspectral data [ C ]//In Proceeding of 13th International Conference of Application of Geologic Remote Sensing. Vancouver, BC, Canada:[s.n.], 1999,11 : 337-344.
  • 6Nascimento J M P, Dias J M B. Vertex component analysis: a fast algorithm to unmix hyperspectral data [ J ]. IEEE Transaction Geoscience Remote Sensing, 2005, 43 (4) :898 - 910.
  • 7Chang C I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis [ J ]. IEEE Transactions on Information Theory, 2000, 45 (5) :1927 - 1932.
  • 8Ramsey M S, Christensen P R. Mineral abundance determination : quantitative deconvolution of thermal emission spectra [ J ]. Journal of Geophysics Research, 1998,103 ( B1 ) :577 - 596.
  • 9Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [ J]. IEEE Transaction Geoscience Remote Sensing, 2001, 39(3) :529 -545.
  • 10Staenz K, Szeredl T, Sehwarz J. ISDAS-A system for processing/analyzing hyperspectral data [ J]. Technical note, Canadian Journal of Remote Sensing, 1998, 24(2) :99 -113.

二级参考文献6

  • 1Hyvarinen A,Karhunen J,Oja E.Independent component analysis[EB/OL].[2001].http://www.cis.hut.fi
  • 2Stefan A Robila,Pramod K Varshney.Target detection in hyperspectral images based on independent component analysis[C]//Proc SPIE of Int Soc Opt Eng.Orlando,USA:SPIE,2002,4726:173-182
  • 3Chiang Shao-Shan,Chang Chein-I,Ginsberg I W.Unsupervised target detection in hyperspectral images using projection pursuit[J].IEEE Trans Geoscience and Remote Sensing,2001,39(7):1380~1391
  • 4Shah C A,Arora M K,Robila S A,et al.ICA mixture model based unsupervised classification of hyperspectral imagery[C]//31st Applied Imagery Pattern Recognition Workshop.USA:IEEE,2002:29~35
  • 5Huang Yaping,Luo Siwei.Genetic algorithm applied to ICA feature selection[C]//Neural Networks,2003 proceeding of the International Joint Conference.USA:IEEE,2003:704-707
  • 6张钧萍,张晔,周廷显.成像光谱技术超谱图像分类研究现状与分析[J].中国空间科学技术,2001,21(1):37-44. 被引量:13

共引文献5

同被引文献25

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部