摘要
光谱解混是高光谱遥感定量化的关键,提出了一种基于光谱信息散度和光谱混合分析的光谱解混改进算法(SID-SMA,Spectral Information Divergence-Spectral Mixed A-nalysis).以光谱信息散度判定最优端元子集,端元选择时采用端元的初选和二次选择来提高端元选择的精度,得到较小的丰度估计误差.通过光谱库模拟数据的结果可以看出,SID-SMA的端元选择精度和丰度估计精度要优于其他算法,当信噪比为100∶1时,算法端元选择正确率达到了99.8%,29个端元的丰度估计总误差小于0.1,并且算法的速度较快.
Spectral unmixing is a key issue of quantitative remote sensing. An advanced spectral unmixing algorithm based on per-pixel optimal endmembers selection named spectral information divergence-spectral mixed analysis (SID-SMA) was proposed. It determined the optimal endmembers subset using the criteria of SID and selected endmembers through two selection steps which could improve the precision of endmember selection and obtain small abundance estimation error. The results of simulated data from spectral library indicate that SID-SMA has better precision of endmember selection and abundance estimation. When the signal-tonoise ratio (SNR) is 100: 1, the correct proportion of endmember selection arrives at 99.86% and total abundance error of 29 endmembers is less than 0.1 and the speed of SID-SMA is much faster.
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2009年第9期1091-1094,共4页
Journal of Beijing University of Aeronautics and Astronautics
基金
中国地质调查局资助项目(1212010816033)
国家863计划资助项目(2008AA121102)
长江学者和创新团队发展计划资助项目(IRT0705)
关键词
光谱解混
光谱信息散度
端元选择
丰度估计
spectral unmixing
spectral information divergence
endmember selection
abundance estimation