摘要
本文将贝叶斯吉伯斯样本生成(Bayesian Gibbs Sampling,BGS)方法应用到状态空间模型的估计。首先介绍了BGS方法的基本内容和计算步骤,然后给定参数生成满足状态空间模型的模拟数据,并对模拟数据应用BGS方法估计。结果表明参数和状态向量的估计值与参数和状态向量的真实值相当接近,明显优于基于Kalman滤波的最大似然估计结果。最后,本文将BGS算法应用于中国1980至2008年的潜在增长率与增长率缺口的估计。
In this paper we apply the Bayesian Gibbs Sampling (BGS) method to the estimate of state space model. First, we introduce the basic contents and computing algorithm, then giving the parameters we generated the data that satisfy a state space model and estimate the model using BGS method. The results show that the estimated parameters and state vector are very close to the real ones and are clearly prior to those of the maximum likelihood estimation based on Kalman filter. Finally, we estimate China's potential GDP growth rate and growth rate gap from 1980 to 2008.
出处
《统计研究》
CSSCI
北大核心
2009年第9期55-63,共9页
Statistical Research
基金
福建省自然科学基金(2009J01312)资助