期刊文献+

基于Bayesian Gibbs Sampler的状态空间模型估计方法研究及其在中国潜在产出估计上的应用 被引量:13

Estimation Method of State Space Model Using Bayesian Gibbs Sampler and Its Application on Estimating China's Potential Growth Rate
下载PDF
导出
摘要 本文将贝叶斯吉伯斯样本生成(Bayesian Gibbs Sampling,BGS)方法应用到状态空间模型的估计。首先介绍了BGS方法的基本内容和计算步骤,然后给定参数生成满足状态空间模型的模拟数据,并对模拟数据应用BGS方法估计。结果表明参数和状态向量的估计值与参数和状态向量的真实值相当接近,明显优于基于Kalman滤波的最大似然估计结果。最后,本文将BGS算法应用于中国1980至2008年的潜在增长率与增长率缺口的估计。 In this paper we apply the Bayesian Gibbs Sampling (BGS) method to the estimate of state space model. First, we introduce the basic contents and computing algorithm, then giving the parameters we generated the data that satisfy a state space model and estimate the model using BGS method. The results show that the estimated parameters and state vector are very close to the real ones and are clearly prior to those of the maximum likelihood estimation based on Kalman filter. Finally, we estimate China's potential GDP growth rate and growth rate gap from 1980 to 2008.
作者 赵昕东 耿鹏
出处 《统计研究》 CSSCI 北大核心 2009年第9期55-63,共9页 Statistical Research
基金 福建省自然科学基金(2009J01312)资助
关键词 贝叶斯估计 吉伯斯样本生成 状态空间模型 潜在增长率 Bayesian Estimation Gibbs Sampler State Space Model Potential Growth Rate
  • 相关文献

参考文献23

  • 1Burmeister,E.,Wall,K.D.and Hamilton,J.D.(1986) "Estmation of Unobserved Rational Expected Monthly inflation Using Kalman Filtering." Journal of Business and Economic Statistics,4,147-160.
  • 2Casella,G.and George,E.I.(1992) "Explaining the Gibbs sampler"[J].Amer.Statist.46,167-174.
  • 3de Pcoter,M.D.,Segers,R.and van Dijk,H.K.(2006) "On the Practice of Bayesian Inference in Basic Economic Time Series Models using Gibbs Sampling",Tinbergen Institute Discussion Paper,TI 2006-076/4,Econometric Institute,Erasmus Universiteit Rotterdam,and Tinbergen Institute.
  • 4Gamier,J.and Wilhelmson,B.(2005) "The Natural Real Interest Rate and the Output Gap in the Euro Area:A Joint Estimation",European Centrel Bank working paper series,No.546.
  • 5Gelman,A.(1996) "Inference and monitoring convergence",in:Gilks,W.R.,Richardson,S.and Spiegelhalter,D.J.(Eds.),Markov Chain Monte Carlo in Practice,Chapman & HAll,131-144.
  • 6Geman,S.,and Geman,D.(1984) "Stochantic relaxation,Gibbs distributions,and the Bayesian restoration of images"[C].IEEE Transactions on Pattern Analysis and Machine Intelligence,6,721-741.
  • 7Gerlach,S.and Smets,F.(1997) "Output Gaps and Inflation,Unobservable-components Estimates for the G-7 Countries",Bank for International Settlements,Basle.
  • 8Geyer,C.J.(1992)."Practical Markov chain Monte Carlo',Statist.Sci.,7,473-511.
  • 9Gilks,W.R.,Richardson,S.and Spiegelhalter,D.J.(1996)."Introducing Markov chain Monte Carlo',in:Gilks,W.R.,Richardson,S.and Spiegelhalter,D.J.(Eds.),Markov Chain Monte Carlo in Practice,Chapman & HAll,1-17.
  • 10Hamilton,J.D.(2006),"Computing Power and the power of Econometrics",Medium Econometrische Toepassingen.

二级参考文献16

  • 1Arderson, R. G., Hoffman, D. L. and Rasche, R. H. (2002) A Vector error correction forecasting model of the US economy [ J ]. Journal of Macroeconomics, 24,569-598.
  • 2Bernanke,B. S., Olekalns, N. and Frank, R. H. (2005) Principles of macroeconomics[ M ], North Ryde, N, S. W., McGraw-Hill Australia.
  • 3Cmasella, G. and George, E.I. (1992). Explaining the Gibbs sampler [J]. Amer. Statist. 46, 167-174.
  • 4Clayton, M. K., Geisser, S. and Jennings, D.E. (1986). A comparison of several model selection procedures[C], in Goel, P. and Zellner, A. (eds), Bayesian Inference and Decision Techniques, New York: Elsevier Science Publisher, 199-212.
  • 5Enders, W. (1995). Applied econometric time series [ M ], 1st edition. New York: Wiley.
  • 6Gelman, A. (1996). Inference and monitoring convergence[ C], in: Gilks, W.R., Richardson, S. and Spiegelhalter, D.J. (Eds.), Markov Chain Monte Carlo in Practice, Chapman & HAll, 131-144.
  • 7Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images [ C ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721- 741.
  • 8Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (1996). Introducing Markov chain Monte Carlo [ C ], in: Gilks, W. R., Richardson, S. and Spiegelhalter, D.J. (Eds.), Markov Chain Monte Carlo in Practice, Chapman & HAll, 1-17.
  • 9Granger, C.J.W. , King, M.L. and White, H. (1995). Comments on the testing economic theries and the use of model selection criteria[ J]. Journal of Econometrics, 67, 173-187.
  • 10Granger, C. J. W. ( 2001 ) Unpublished manuscript. University of California-San Diego.

共引文献4

同被引文献231

引证文献13

二级引证文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部