期刊文献+

基于同步树序列替换文法的统计机器翻译模型 被引量:2

Synchronous Tree Sequence Substitution Grammar for Statistical Machine Translation
下载PDF
导出
摘要 基于短语的模型是目前发展相对成熟的一种统计机器翻译(Statistical machine translation,SMT)模型.但基于短语的模型不包含任何结构信息,因而缺乏有效的全局调序能力,同时不能对非连续短语进行建模.基于句法的模型因具有结构信息而具有解决以上问题的潜力,因而越来越受到研究者们的重视.然而现有的大多数基于句法的模型都因严格的句法限制而制约了模型的描述能力.为突破这种限制并将基于短语的模型的优点融入到句法模型中,本文提出一种基于同步树序列替换文法(Synchronous tree sequence substitution grammar,STSSG)的统计机器翻译模型.在此模型中,树序列被用作为基本的翻译单元.在这种框架下,不满足句法限制的翻译等价对和满足句法限制的翻译等价对都可以融入句法信息并被翻译模型所使用.从而,两种模型的优点均得到充分利用.在2005年度美国国家标准与技术研究所(NIST)举办的机器翻译评比的中文翻译任务语料上的实验表明,本文提出的模型显著地超过了两个基准系统:基于短语的翻译系统Moses和一个基于严格树结构的句法翻译模型. Phrase-based models are the state-of-the-art statistical machine translation models. However, they can not effectively handle global reordering and discontiguous phrases due to the lack of structural information. While syntax-based models have the potential to attack these problems, they suffer from the strictly syntactic constraints. To address these constraints and integrate the advantages of phrase-based models into syntax-based models, a synchronous tree sequence substitution grammar (STSSG) based statistical machine translation (SMT) model is presented in this paper. This novel model uses the tree sequence as the basic translation unit. Therefore, both the syntactic translation equivalences and the non-syntactic translation equivalences equipped with syntactic information can be utilized in the translation. Experimental results on the NIST 2005 Chinese-English machine translation data-set show that the proposed method achieves significant improvements over baseline methods including a phrasal model, Moses, and a tree-based syntax model.
出处 《自动化学报》 EI CSCD 北大核心 2009年第10期1317-1326,共10页 Acta Automatica Sinica
基金 国家自然科学基金重点项目(60736014) 国家高技术研究发展计划(863计划)重点项目(2006AA010108)资助~~
关键词 统计机器翻译 句法限制 同步文法 同步树替换文法 同步树序列替换文法 Statistical machine translation (SMT), syntactic constraint, synchronous grammar, synchronous tree substitution grammar, synchronous tree sequence substitution grammar (STSSG)
  • 相关文献

参考文献20

  • 1Wu D K. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Linguistics, 1997, 23(3): 377-403.
  • 2Chiang D. A hierarchical phrase-based model for statistical machine translation. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Ann Arbor, Michigan: Association for Computational Linguistics, 2005. 263-270.
  • 3Liu Y, Liu Q, Lin S X. Tree-to-string alignment template for statistical machine translation. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Sydney, Australia: Association for Computational Linguistics. 2006. 609-616.
  • 4蒋宏飞,李生,付国宏,赵铁军,张民.一种基于同步树替换文法的统计机器翻译模型[J].软件学报,2009,20(5):1241-1253. 被引量:1
  • 5Liu Y, Huang Y, Liu Q, Lin S X. Forest-to-string statistical translation rules. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics, 2007. 704-711.
  • 6Xiong D Y, Liu Q, Lin S X. Maximum entropy based phrase reordering model for statistical machine translation. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Sydney, Australia: Association for Computational Linguistics, 2006. 521-528.
  • 7Galley M, Hopkins M, Knight K, Marcu D. What's in a translation rule? In: Proceedings of the 2004 Conference of the North American Chapter of the Association for Computational Linguistics. Boston, USA: Association for Computational Linguistics, 2004. 273-280.
  • 8Eisner J. Learning non-isomorphic tree mappings for machine translation. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics. Sapporo, Japan: Association for Computational Linguistics, 2003. 205-208.
  • 9Zhang M, Jiang H F, Aw A, Li H Z, Tan C L, Li S. A tree sequence alignment-based tree-to-tree translation model. In: Proceedings of the 46th Annual Meeting on Association for Computational Linguistics. Ohio, USA: Association for Computational Linguistics, 2008. 559-567.
  • 10Fox H J. Phrasal cohension and statistical machine translation. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing. Philadelphia, Pennsylvania: Association for Computational Linguistics, 2002. 304-311.

二级参考文献39

  • 1黄昌宁,李涓子.词义排歧的一种语言模型[J].语言文字应用,2000(3):85-90. 被引量:16
  • 2卢志茂,刘挺,李生.统计词义消歧的研究进展[J].电子学报,2006,34(2):333-343. 被引量:28
  • 3蒋宏飞,杨沐昀,赵铁军.面向奥运的汉英RBMT与EBMT研究[J].中文信息学报,2006,20(B03):71-74. 被引量:1
  • 4吕雅娟 赵铁军 李生 杨沐昀.统计和词典方法相结合的双语语料库词对齐[A]..第六届计算语言学联合学术会议[C].太原,2001..
  • 5Yamada K, Knight K. A syntax-based statistical translation model. In: Proc. of the ACL 2001. Toulouse, 2001. 523-530.
  • 6Quirk C, Menezes A, Cherry, C. Dependency treelet translation: Syntactically informed phrasal SMT. In: Proc. of the ACL 2005. New York, 2005. 271-179.
  • 7Liu Y, Liu Q, Lin S. Tree-to-String alignment template for statistical machine translation. In: Proc. of the ACL 2006. Sydney, 2006. 609-616.
  • 8Wu D. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Linguistics, 1997, 23(3):377-403.
  • 9Chiang D. Hierarchical phrase-based translation. Computational Linguistics, 2007,33(2):201-228.
  • 10Galley M, Hopkins M, Knight K, Marcu D. What's in a translation rule? In: Proc. of the HLT/NAACL 2006. Boston, 2004. 273-280.

共引文献5

同被引文献5

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部