期刊文献+

一种基于加权隐马尔可夫的自回归状态预测模型 被引量:14

Research on Condition Trend Prediction Based on Weighed Hidden Markov and Autoregressive Model
下载PDF
导出
摘要 针对电子系统状态趋势预测问题,提出了一种加权隐马尔可夫模型的自回归趋势预测方法.该方法以自回归模型作为隐马尔可夫的状态输出,利用加权预测思想对马尔可夫链中的隐状态进行混合高斯模型的加权序列预测,并利用最大概率隐状态下的自回归系数计算模型输出.通过对实际的复杂混沌序列和电子系统BIT状态数据进行趋势预测,并针对不同模型参数下的预测结果进行实验分析,结果表明该方法对系统状态变化的趋势具有较好的预测性能. A novel trend prediction approach based on weighed hidden Markov model(HMM)and autoregressive model(AR)is presented in order to solve this problem of trend prediction for complex electronic system.This approach regards the autoregressive model as the output of HMM,uses weighted prediction method and mixed Gaussianin model to predict the hidden state of Markov chain,and calculates the output of model by using the regression coefficient of the maximum probability hidden state.This approach is applied to the trend prediction of complex chaotic time series and typical electronic equipment's BIT data,and the effects of various model parameters on trend prediction precision are discussed.The experiments based on condition trend prediction for electronic equipments demonstrate the effectiveness of the method.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第10期2113-2118,共6页 Acta Electronica Sinica
基金 国防基础科研项目(No.A1420061264)
关键词 趋势预测 隐马尔可夫 自回归 加权预测 trend prediction hidden Markov model autoregressive model weighed prediction
  • 相关文献

参考文献16

  • 1A Goel, R J Graves. Electronic System Reliability: Collating Prediction Models[ J]. IEEE Transactions on Device and Materials Reliability, 2006,6(2) : 258 - 265.
  • 2J D Parry, J Rantala, C J M Lasance. Enhanced Electronic System Reliability-Challenges for Temperature Prediction[J]. IEEE. Transactions on Components and Packaging Technologies, 2002,25(4) :533 - 538.
  • 3A Abraham. A Soft Computing Approach for Fault Prediction of Electronic Systems [ A ]. Proceedings of the Second International Conference on Computers in Industry [ C ]. Bahrain: Bahrain Society of Engineers Press,2000.83 -91.
  • 4K Benabdeslem. Hybrid neural system for time series prediction [ A]. Proceedings of the 28th International Conference on Information Technology Interfaces [ C ]. Croatia: IEEE Press, 2006. 349 - 354.
  • 5D Ruta, B Gabrys. Neural Network Ensembles for Time Series Prediction[A]. Proceedings of International Joint Conference on Neural Networks[C]. Orlando: IEEE Press,2007.1204 - 1209.
  • 6Z W Shi,M Han. Support vector echo-state machine for chaotic time-series prediction[ J ]. IEEE Transactions on Neural Networks,2007,18(2) : 359 - 372.
  • 7S F Crone, S Lessmann, S Pietsch. Forecasting with Computational Intelligence-An Evaluation of Support Vector Regression and Artificial Neural Networks for Time Series Prediction[ A]. Proceedings of 2006 International Joint Conference on Neural Networks[ C]. Vancouver: IEEE Press,2006. 3159- 3166.
  • 8M A LFilho, T Ohishi, R Ballini. Ensembles of Selected and Evolved Predictors using Genetic Algorithms for Time Series Prediction[A]. Proceedings of IEEE Congress on Evolutionary Computation[ C ]. Vancouver: IEEE Press, 2006. 2872 - 2879.
  • 9O Castillo,P Melin. Comparison of Hybrid Intelligent Systems, Neural Networks and Interval Type-2 Fuzzy Logic for Time Series Prediction [ A ]. Proceedings of International Joint Conference on Neural Networks[ C]. Orlando: IEEE Press, 2007. 3086 - 3091.
  • 10王作英,肖熙.基于段长分布的HMM语音识别模型[J].电子学报,2004,32(1):46-49. 被引量:42

二级参考文献7

  • 1刘海波,陈孝思,秦玉才,刘晖.随机过程在灾变预测中的应用[J].系统工程理论与实践,1996,16(9):19-23. 被引量:19
  • 2齐士钤 张家禄.汉语普通话辅音音长分析[J].声学学报,1982,(1):8-13.
  • 3王作英.基于段长分布的HMM语音识别模型.第二届全国汉字语音识别会议[M].庐山,1989..
  • 4刘嘉琨.应用随机过程基础[M].天津:天津大学出版社,1995..
  • 5王作英.基于段长分布的HMM语音识别模型 [A]..第二届全国汉字汉语识别会议 [C].庐山,1989.9.
  • 6丁晶,随机水文学,1988年
  • 7刘嘉琨,应用随机过程基础,1995年

共引文献147

同被引文献150

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部