期刊文献+

基于EMD-SVM的江水浊度预测方法研究 被引量:15

Prediction of River Water Turbidity Based on EMD-SVM
下载PDF
导出
摘要 针对江水浊度序列宽频、非线性、非平稳的特点,将经验模态分解(EMD)和支持向量机(SVM)回归方法引入浊度预测领域,建立了基于EMD-SVM的浊度预测模型.通过EMD分解,将原始非平稳的浊度序列分解为若干固有模态分量(IMF),根据各IMF序列的特点,选择不同的参数对各IMF序列进行预测,最后合成原始序列的预测值.将该方法应用于实际浊度预测,并与径向基神经网络(RBF)预测及单独支持向量机回归预测结果进行比较,仿真结果表明该方法预测精度有明显提高. Due to the nonlinear and nonstationary characteristics of river water turbidity,a novel intelligent forecasting method based on empirical mode decomposition(EMD)and support vector machines(SVMs),is proposed.The intrinsic mode functions(IMFs)are adaptively extracted via EMD from a time series of turbidity according to the intrinsic characteristic time scales.Then tendencies of these IMFs are forecasted with SVMs respectively,in which the kernel functions are appropriately chosen with these different fluctuations of IMFs.Finally these forecasting results are combined to output the ultimate forecasting result.The proposed model is applied to a water turbidity tendency forecasting example,and the simulation results show that the forecasting performance of the hybrid model outperforms SVMs and RBF ahead forecasting.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第10期2130-2133,共4页 Acta Electronica Sinica
关键词 浊度 预测 经验模态分解 支持向量 turbidity prediction empirical mode decomposition support vector
  • 相关文献

参考文献8

  • 1Robert J. May, et al. Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems[ J ]. Environ. Model. Softw, 2008,23 ( 10 - 11) : 1289 - 1299.
  • 2Bowden, G. J., 2003. Forecasting Water Resoures Variables Using Artificial Neural Techniques [ D ]. Ph. D, University of Adelaide.
  • 3HUANG N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stasftinary time series analysis[ A]. Proceedings of the Royal Society of London setdes A-Mathematical Physical and Engineering Sciences[ C]. London, 1998.
  • 4Vapnik V N. The nature of statistical learning t heory[M] .New York : Springer-Verlag,2000.
  • 5Guo G D, Li S Z. Contents based audio classification and retrieval by support vector machines [J]. IEEE. Trans on Neural Network, 2003,14(1) :209-215.
  • 6艾玲梅,王珏.基于双谱分析和支持向量机的手震颤加速度信号识别[J].电子学报,2008,36(11):2165-2170. 被引量:6
  • 7Li S Z. Contents based classification and retrieval of audio using the nearest feature line met hod[ J]. IEEE. Trans on Speech Audio Processing,2000, 8(9) :619 - 625.
  • 8赵登福,王蒙,张讲社,王锡凡.基于支撑向量机方法的短期负荷预测[J].中国电机工程学报,2002,22(4):26-30. 被引量:103

二级参考文献20

  • 1A Cappello, A Leardini, M G Benedetti, et al. Appfication of stereophotogrammetry to total body three dimension analysis of human tremor [ J ]. IEEE Transactions on Rehabilitation Engineering, 1997,5 (4) : 388 - 393.
  • 2A Chwaleba, J Jakubowski, K Kwiatos. The measuring set and signal processing method for the characterization of human hand tremor[ A ]. CADSM' 2003 [ C]. Lviv-Slasko, Ukraine, 2003. 149- 154.
  • 3J M Spyers-Ashby, M J Stokes, P G Bain, et al. Classification of normal and pathological tremor using a multidimensional elec-tromagnetic system [J]. Medical Engineering & Physics, 1999,21(10) :713 - 723.
  • 4R Edwards, A Beuter. Indexes for identification of abnormal tremor using computer tremor evaluation systems [ J ]. IEEE Transactions on Biomedical Engineering, 1999, 46 (7) : 895 - 898.
  • 5J Timmer,M Lauk, W Vach, et al.A test for difference between speclral peak frequencies [ J ]. Computational Statistic & Data Analysis, 1999,30(1) : 45 - 55.
  • 6M Lauk,B Koster, J Timmer, et al. Side-to Side correlation of muscle activity in physiology and pathological tremors[ J]. Clinical neurophysiology, 1999,110(10) : 1774 - 1783.
  • 7David E Vaillancourt, Andrew B Slifkin, Karl M Newell. Regularity of force tremor in Parkinson' s disease[J]. Clinical Neurophysiology,2001,112(9) : 1594 - 1603.
  • 8H J Wharrad, D Jefferson. Distinguishing between physiological and essential tremor using discriminant and cluster analyses of parameters derived from the frequency spectrum [ J ]. Human Movement Science, 2000, 19(3) :319 - 339.
  • 9Mehmet Engin, Serdar Demirag, Erkan Zeki Engin, et al. The classification of human tremor signals using artificial neural network[ J ]. Expert Systems with Applications. 2007,33 (3) : 754 - 761.
  • 10M J Hinich, G R Wilson. Detection of non-Gaussian signals in non-Gaussian noise using the bispectrum[J]. IEEE Transaction on Signal Processing, 1990,38(7): 1126- 1131.

共引文献107

同被引文献171

引证文献15

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部