期刊文献+

一种度量图像相似性和计算图编辑距离的新方法 被引量:5

A New Algorithm for Image Similarity Measure and Graph Edit Distance
下载PDF
导出
摘要 由于在图编辑距离(GED)的计算中合理地为编辑操作定义代价函数相当困难,因此本文提出一种基于图结构的独立于代价函数定义的GED计算方法.它利用边缘方向直方图刻画图的结构,通过计算边缘方向直方图之间的距离来判断图的相异性,从而无需再定义代价函数.Earth Mover’s Distance(EMD)可以准确地计算直方图之间的距离,而且对于图在平面内的旋转所引起的直方图变化具有鲁棒性.为此,本文采用边缘方向直方图之间的EMD计算图编辑距离.将图像用图来表示,利用这种新的图编辑距离度量图像之间的相似性.实验结果表明本文提出的方法可以简单而有效地对图像进行聚类和分类,与基于谱序列计算图编辑距离的方法相比,可以更好地刻画图的结构差异. For the difficulty of reasonably defining cost functions for edit operations in Graph Edit Distance(GED),a purely structural method for GED computing is proposed which is thoroughly independent of cost functions.It makes use of Edge Direction Histogram(EDH)to characterize the structure of graphs,and estimates the dissimilarity of graphs by computing the distance of EDHs without defining cost functions.Earth Mover's Distance(EMD)examines histograms' distance exactly and is robust with respect to the diversification of histograms caused by rotating a graph in the same plane,so GED is measured by the EMD of EDHs in this paper.Images are represented by graphs and this new distance measure is used for examination of image similarity.Experimental results demonstrate that the proposed method is effective for classifying and clustering images.Compared with the GED from spectral seriation,the proposed method can capture the structure difference of graphs better.
出处 《电子学报》 EI CAS CSCD 北大核心 2009年第10期2205-2210,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60771068 No.60702061 No.60832005) 教育部长江学者和创新团队支持计划(No.IRT0645) 中科院自动化所模式识别国家重点实验室开放基金 深圳大学ATR国防科技重点实验室开放基金
关键词 非精确图匹配 图编辑距离 边缘方向直方图 EARTH Mover’s Distance(EMD) inexact graph matching graph edit distance(GED) edge direction histogram(EDH) earth mover's distance(EMD)
  • 相关文献

参考文献19

  • 1H Bunke. Recent developments in graph matching [ A ]. Proceedings of 15th International Conference on Pattern Recognition[ C]. Barcelona, Spain: IEEE Press, 2000.117 - 124.
  • 2T Caelli, S Kosinov. An eigenspace projection clustering method for inexact graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26 (4) : 515- 519.
  • 3A D J Cross,R C Wilson,E R Hancock.Inexact graph matching using genetic search[J]. Pattern Recognition, 1997,30(7) : 953 - 970.
  • 4S Umeyama. An eigendecomposition approach to weighted graph matching problems [ J ]. IEEE. Transactions on Pattern Analysis and Machine Intelligence, 1988,10(5) : 695 - 703.
  • 5R A Wagner,M J Fischer. The string-to-string correction problem[ J]. Journal of the A CM, 1974,21( 1 ) : 168 - 173.
  • 6A Sanfeliu, K S Fu. A distance measure between attributed relational graphs for pattern recognition[ J]. IEEE Transactions on Systems,Man, and Cybernetics, 1983,13(3) :353 - 362.
  • 7B T Messmer, H Bunke. Efficient error-tolerant subgraph isomorphism detection [ A ]. Doff D, Bruckstein A. Shape, Structure,and Pattern Recognition[ C]. world Scientific Publishing, 1994.231 - 240.
  • 8B T Messmer, H Bunke. A new algorithm for error-tolerant subgraph isomorphism detection[ J]. IEEE. Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 5 ) : 493 - 504.
  • 9H Bunke. On a relation between graph edit distance and maximum common subgraph[ J]. Pattern Recognition Letters, 1997, 18(8) :689 - 694.
  • 10R Myers,R C Wilson, E R Hancock.Bayesian graph edit distance[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(6 ) : 628 - 635.

同被引文献53

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部