期刊文献+

一种基于液相色谱-质谱技术进行血清代谢组学研究的方法:从代谢指纹到潜在标志物 被引量:19

A metabonomics approach based on liquid chromatography-mass spectrometry:from metabolic profiling to potential biomarker
原文传递
导出
摘要 本文描述了一种基于液相色谱-质谱技术(LC-MS)的代谢组学发现疾病潜在标志物的方法.该方法利用LC-MS获得代谢指纹图谱,并通过多种统计分析方法对产生的海量数据进行分析,最终筛选出潜在标志物.数据分析过程包括:通过归一化、修正80%规则、数据集分割和数据缩放等方法对数据集进行预处理;通过正交校正的偏最小二乘(OPLS)模式识别方法对样品进行分型;根据模型的变量重要性因子(VIP值)、非参数检验结果和z值筛选潜在标志物.以宫颈癌血清样本为例,应用上述方法,15个变量被确认为潜在标志物,操作者接受曲线(ROC)下的面积为0.667~0.956.经过相关性分析和结构鉴定,发现这15个变量来自9个化合物.其中7个化合物被鉴定为色氨酸、硬脂酸、花生四烯酸、溶血磷脂酰胆碱(0:0/16:0,16:0/0:0,18:1/0:0和18:0/0:0),说明在宫颈癌中花生四烯酸和溶血磷脂酰胆碱的代谢发生异常. A LC-MS based metabonomics approach for potential biomarkers screening is described. Metabolic profiles were acquired by LC-MS technology, and potential biomarkers were filtered by multiple statistical methods. Data pretreatment includes data normalization and scaling, corrected 80% rule, and dataset division. According to metabolic patterns, cervical cancer and health group were separated by OPLS. Potential biomarker screening was performed according to VIP value, significant test and z-score. As a result, fifteen variables were considered as potential biomarker, and their AUC were 0.667-0.956. The fifteen variables correspond to nine compounds, seven of which were identified as tryptophan, stearic acid, arachidonic acid, and lysoPC (0:0/16:0, 16:0/0:0, 18: 1/0:0, 8 : 0/0 : 0). It can be concluded that abnormal metabolism of arachidonic acid and lysoPC happened in cervical cancer.
出处 《中国科学(B辑)》 CSCD 北大核心 2009年第10期1268-1276,共9页 Science in China(Series B)
基金 国家高技术研究发展计划(编号:2006AA02Z342) 蛋白质科学重大研究计划(编号:2007CB914701)项目资助
关键词 代谢组学 液质联用 宫颈癌 肿瘤标志物 metabonomics, metabolomics, LC-MS, cervical cancer, cancer biomarker
  • 相关文献

参考文献30

  • 1Nicholson J K. Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol, 2006, 2: article 52.
  • 2Nicholson J K, Lindon J C, Holmes E. "Metabonomics": Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological N MR spectroscopic data. Xenobiotica, 1999, 29(11): 1181 - 1189.
  • 3Seo D, Ginsburg G. S. Genomic medicine: bringing biomarkers to clinical medicine. Curr Opin Chem Biol, 2005, 9(4): 381-386.
  • 4Yang J, Xu G W, Zheng Y F, Kong H W, Pang T, Lv S, Yang Q. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B, 2004, 813(1-2): 59-65.
  • 5De Vos R C H, Moco S, Lommen A, Keurentjes J J B, Bino R J, Hall R D. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat Protoc, 2007, 2(4): 778-791.
  • 6Yin P Y, Zhao X J, Li Q R, Wang J S, Li J s, Xu G W. Metabonomics study of intestinal fistulas based on ultraperformance liquid chromatography coupled with Q-TOF mass spectrometry (UPLC/Q-TOF MS). J Proteome Res, 2006, 5(9): 2135 -2143.
  • 7Kind T, Tolstikov V, Fiehn O, Weiss R H. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem, 2007, 363(2): 185-195.
  • 8Chen J, Wang W Z, Lv S, Yin P Y, Zhao X J, Lu X, Zhang F X, Xu G W. Metabonomics study of liver cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Anal Chim Acta, 2009, doi:10.1016/j.aca.2009.03.039.
  • 9Sreekumar A, Poisson L M, Rajendiran T M, Khan A P, Cao Q, YuJ D, Laxman B, Mehra R, Lonigro R J, Li Y, Nyati M K, Ahsan A, Kalyana-Sundaram S, Han B, Cao X H, Byun J, Omenn G S, Ghosh D, Pennathur S, Alexander D C, Berger A, Shuster J R, Wei J T, Varambally S, Beecher C, Chinnaiyan A M. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 2009, 457(7231): 910-914.
  • 10Cubbon S, Bradbury T, Wilson J, Thomas-Oates J. Hydrophilic interaction chromatography for mass spectrometric metabonomic studies of urine. Anal Chem, 2007, 79(23): 8911-8918.

同被引文献244

引证文献19

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部