期刊文献+

两类多元GARCH模型的预测绩效和组合VaR的研究 被引量:1

The Forecast Performance of Two Style GARCH Models and Portfolio VaR Computation
原文传递
导出
摘要 运用V aR模型对股票组合进行风险测度的关键之一是得到组合条件协方差矩阵.而经典的多元GARCH模型来求解波动率面临着估计参数过多,计算量庞大的问题.因此,使用正交GARCH模型和CCC模型来估算波动率,并以沪深两市A股市场上四个行业的65只股票为样本,使用RM SE和M AD指标比较这些模型的预测能力,求得股票组合的V aR,得出前者效率高和后者预测能力略高的结论. The conditional covariance matrix plays a critical role in portfolio VaR computation. However, in the classical multivariate GARCH model large-scale portfolio is highly parameterized and difficult to estimate in practice. So this paper uses O-GARCH model and CCC model to calculate the volatilities of portfolio. Then 65 samples of stocks in A stock market of Shanghai and Shenzhen is examined by these models. Finally, we follow two criteria to judge the quality of the volatility forcasts and compute portfolio VaR by the conditional covariance matrix.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第20期41-47,共7页 Mathematics in Practice and Theory
关键词 正交GARCH模型 CCC模型 VAR 股票组合 O-GARCH CCC VaR stock portfolio
  • 相关文献

参考文献11

  • 1Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31 (3): 307-327.
  • 2Bauwens L, Laurent S, Rombouts J. Multivariate GARCH Models: A survey [J]. Journal of Applied Econometrics, 2006, 21(1): 79-109.
  • 3Alexander C O. Principal component models for generating large GARCH covariance matrices [J]. Economic Notes, 2002, 31(2): 337-359.
  • 4刘志东.基于Copula-GARCH-EVT的资产组合选择模型及其混合遗传算法[J].系统工程理论方法应用,2006,15(2):149-157. 被引量:35
  • 5黄海南,钟伟.GARCH类模型波动率预测评价[J].中国管理科学,2007,15(6):13-19. 被引量:38
  • 6樊智,张世英.多元GARCH建模及其在中国股市分析中的应用[J].管理科学学报,2003,6(2):68-73. 被引量:55
  • 7Morgan J P. Riskmetrics Technical Document[M]. New York: Morgan Guaranty Trust Company, 1996.
  • 8Bollerslev T. Modelling the coherence in short-run nominal exchange rates: a multi variate generalized ARCH model[J]. Review of Economics and Statistics, 1990, 72(3): 498-505.
  • 9Barndorff-Nielsen O, Shephard N. Econometric analysis of realized covariation= high frequency based eovariance, regression, and correlation in financial economics[J]. Eeonometriea, 2004, 72(3): 885-925.
  • 10Ledoit O, Santa-Clara P, Wolf M. Flexible multivariate GARCH modeling with an application to international stock markets[J]. The Review of Economies and Statistics, 2003, 85(3): 735-747.

二级参考文献33

  • 1徐正国,张世英.调整"已实现"波动率与GARCH及SV模型对波动的预测能力的比较研究[J].系统工程,2004,22(8):60-63. 被引量:51
  • 2韦艳华,张世英,郭焱.金融市场相关程度与相关模式的研究[J].系统工程学报,2004,19(4):355-362. 被引量:83
  • 3周林.股票波动率模拟及预测效果的实证研究[J].上海经济研究,2006,18(12):100-105. 被引量:7
  • 4[1]Bollerslev,T.,R.Y.Chou,K.F.Kroner.ARCH Modeling in Finance:A Review of the Theory and Empirical Evidence[J].Journal of Econometrics,1992,52:5-59.
  • 5[2]Mincer,J.and V.Zarnowitz.The Evaluation of Economic Forecasts[J].in J.Mincer,ed.,Economic Forecasts and Expectations (New York:National Bureau of Economic Research),1969.
  • 6[3]Cumby R.,S Figlewski,and J.Hasbrouck.Forecasting Volatility and Correlations with EGARCH Models[J].Journal of Derivatives,1993,Winter:51-63
  • 7[4]Tsay.Ruey S..Analysis of Financial Time Series[M].John Wiley & Sons,2002:112-113
  • 8[5]Andersen T,Bollerslev T..Towards a unified framework for high and low frequency return volatility modeling[J].Statistical Neerlandica,1998,52 (3):273-302.
  • 9[6]Andersen T.G.,Tim Bollerslev Francis Diebold,and P.Labys.Modeling and Forecasting Realized Volatility[J].Econometrica,2003,71(2):579-625.
  • 10[10]Engle RF..Autoregressive conditional heteroskedasticity with estimates of the variance of U.K.inflation[J].Econometrica,1982,45:987-1007.

共引文献125

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部