摘要
E是实Banach空间,其范数是一致G-可微的;K是E的非空闭凸子集,T:K→K是具有序列{kn}[1,∞},limn→∞kn=1的渐近非扩张映射.在一定条件下,讨论的迭代序列{xn}强收敛到T的1个不动点.
Let E be a real Banach space with a uniformly Gateaux differentiable norm,K be a nonempty closed convex subset of E and T:K→K be an asymptotically nonexpansive mapping with a sequence {kn}[1,∞},limn→∞kn=1.It is shown that under some suitable conditions,the sequence {xn} converges strongly to some fixed point of T.
出处
《河北大学学报(自然科学版)》
CAS
北大核心
2009年第5期457-459,465,共4页
Journal of Hebei University(Natural Science Edition)
基金
河北省自然科学基金数学研究专项资助项目(07M003)
河北省教育厅资助项目(Z2009111)
关键词
渐近非扩张映射
一致G可微
不动点
asymptotically nonexpansive mappings
uniformly Gteaux differentiable norm
fixed point