期刊文献+

基于灰色定性理论的移动机器人地图创建 被引量:1

Map building for mobile robot based on GQSIM
原文传递
导出
摘要 针对移动机器人自主导航地图创建中超声波信息存在不确定性的问题,提出一种新的基于灰色定性理论的超声波信息解释和融合的方法,并用于处理超声波传感器信息和移动机器人创建环境地图.首先,引入概率灰数对超声波信息的不确定性进行描述,以获得栅格单元和传感器的概率灰数模型;然后,设计超声波传感器新旧信息的融合方法,从而得到环境地图的整体表示;最后通过地图创建仿真实验结果表明了这种方法具有良好的鲁棒性和准确度. According to the uncertainty of sonar information in map building of mobile robot autonomous navigation, a novel method based on grey qualitative simulation(GQSIM) is proposed to interpret and combine sonar information, which is used to process sonar information and build grid map of the environment. First, probability grey number is introduced to describe the uncertainty of sonar information, in order to obtain the probability grey number models of grid cell and sonar. Then, a fusion method is devised to combine new and old information, so that the global map of the enviroment is built: Finally, simulation experiment results show the robustness and accuracy of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2009年第10期1473-1476,1482,共5页 Control and Decision
基金 国家自然科学基金项目(60575033) 国家863计划项目(2007AA04Z227)
关键词 移动机器人 栅格地图 不确定信息 灰色定性理论 概率灰数 Mobile robot Grids map Uncertain information GQSIM Probability grey number
  • 相关文献

参考文献13

  • 1Montemerlo M, Thrun S. Simultaneous location and mapping with unknown data association using fast SLAM[C]. Proc of the IEEE Int Conf on Robotics and Automation. Taipei: IEEE Computer Society Press, 2003: 1985-1991.
  • 2Gasos J, Rosetti A. Uncertainty representation for mobile robots: Perception, modeling and navigation in unknown environments[J]. Fuzzy Sets and Systems, 1999, 107(1): 1-24.
  • 3Oriolo G, Utivi G. Real-time map building and navigation for autonomous robots in unknown environments[J]. IEEE Trans on Systems, Man and Cybernetics, 1998, 28(3): 316-333.
  • 4Thrun S, Fox D, Burgard W. A probabilistic approach to concurrent mapping and localization for mobile robots [J]. Machine Learning and Autonomous Robots, 1998, 31 (1): 29-53.
  • 5Ribo M, Pinz A. A comparison of three uncertainty calculi for building sonar-based occupancy grids [J]. Robotics and Autonomous Systems, 2001, 35(3): 201- 209.
  • 6Elfes A, Moravec H. High resolution maps from wide angle sonar[C]. Proc of IEEE Int Conf on Robotics and Automation. St Louis: IEEE Computer Society Press, 1985:116-121.
  • 7Elfes A. Using occupancy grids for mobile robot perception and navigation[J]. Computer, 1989, 22(6) : 46-57.
  • 8Noykov S, Roumenin C. Occupancy grids building by sonar and mobile robot[J]. Robotics and Autonomous Systems, 2007, 55(2): 162-175.
  • 9Collins T,Collins J, Ryan C. Occupancy grid mapping: An empirical evaluation [C]. Mediterranean Conf on Control and Automation. Athens: IEEE, 2007 : 1-6.
  • 10Collins T, Collins J, Sullivan S O, et al. Evaluating techniques for resolving redundant information and specularity in occupancy grids [C]. Advances in Artificial Intelligence. Sydney: Springer, 2005: 235- 244.

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部