期刊文献+

基于加权相空间重构降噪及样本熵的齿轮故障分类 被引量:9

Gear fault classification based on weighted phase space reconstruction and sample entropy
下载PDF
导出
摘要 提出了一种基于加权相空间重构降噪及样本熵的齿轮故障分类方法,给出了加权相空间重构降噪及样本熵的原理及计算公式。该方法将一维的时间序列重构到高维的相空间,通过区分吸引子在高维空间的不同的属性与特征,对原始信号进行加权相空间重构降噪,再计算降噪后信号的样本熵从而实现对齿轮故障信号的分类。对该方法进行了仿真与实验研究,结果表明,降噪后的信号有效地抑制了噪声对实验结果的影响,使得样本熵能够对齿轮不同的工作状态进行有效区分。 The vibration signal of the working gear box mixed with a lot of noise is strong nonlinear, which leads to the fact that identification of the working status of the gear is difficult. A fault classification method based on weighted phase space reconstruction and sample entropy is proposed, the principle and calculation formula for the weighted phase space reconstruction noise reduction and sample entropy method is given. It makes the time series continuation from one dimension to higher dimension, which can indicate the feature not well discriminated in one dimension to the attractor easily discriminated in higher dimension. The noise mixed in original vibration signal is reduced, and then the sample entropy of the processed signal is calculated, which realizes classification of the fault signal for gear. The simulation and experiment is carried out. The results show that the processed signal can suppress the influence of noise to the experiment, which make that the different working state for the gear can be discriminated by sample entropy.
出处 《振动工程学报》 EI CSCD 北大核心 2009年第5期462-466,共5页 Journal of Vibration Engineering
基金 国家自然科学基金资助(50705069) 武汉晨光计划资助(200950431201)
关键词 相空间重构 样本熵 故障诊断 齿轮 phase space reconstruction sample entropy fault diagnosis gear
  • 相关文献

参考文献9

二级参考文献30

  • 1孟建,屈梁生,刘晗.全息谱的分解及其在机械诊断中的应用[J].机械工程学报,1997,33(2):106-110. 被引量:8
  • 2吕志民 徐金梧 杨得斌.基于奇异谱的降噪方法在齿轮故障诊断中的应用[J].振动工程学报,1998,(11):95-99.
  • 3Tong H. Non-linear Time Series Analysis. Oxford: Oxford University Press, 1990.
  • 4Tufillaro N B, Abbott T, Reilly J. An Experimental Approach to Nonlinear Dynamics and Chaos. Redwood City,CA: Addison-Wesley, 1992.
  • 5Artuso R. Recycling of strange sets, Ⅰ and Ⅱ. Nonlearity,1990(3): 325-361.
  • 6Kanty H, Schreiber T. Nonlinear Time Series Analysis Cambridge: Cambridge University Press, 1997.
  • 7Qu Liangsheng, Lin Jing. A difference resonator for detecting weak signals. Measurement, 1999(26): 69-77.
  • 8何旭初,广义逆矩阵的基本理论和计算方法,1985年
  • 9王东生,混沌、分形及其应用,1995年
  • 10张贤达,现代信号处理,1995年

共引文献183

同被引文献92

引证文献9

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部