期刊文献+

考虑几何非线性的旋转薄壁圆柱壳进动响应分析

Precession response analysis of thin rotating circular cylindrical shell considering geometric nonlinearity
下载PDF
导出
摘要 选取悬臂旋转薄壁圆柱壳作为研究对象,利用能量法推导了其振型进动因子,并考虑了阻尼以及几何非线性的影响。应用Donnell’s简化壳理论建立考虑几何非线性以及振型进动的非线性波动方程,使用Galerkin法对非线性波动方程进行离散化,获得模态坐标上的非线性微分方程组,分别应用Runge-Kutta法和谐波平衡法对其进行数值求解和近似解析求解,并分析了近似解析解的稳定性。结果表明,几何非线性不影响振型进动因子,但使系统的频率响应曲线具有多值性和跳跃性。 A cantilever thin rotating circular cylindrical shell is investigated in this paper. The precession factor of vibrating shape is obtained by an energy approach, with damping and geometric nonlinearity considered. Donnell's shallow-shell theory is used, the non-linear equations of motion are discretized by Galerkin method, in which geometric nonlinearity and precession of vibrating shape are taken into account. The non-linear mode equations are studied by using Runge-Kutta method and harmonic balance method, and the stability of analytical solutions is studied. The results show that geometric nonlinearity does not influence the precession factor of vibrating shape but causes multi-value and leap characteristics.
出处 《振动工程学报》 EI CSCD 北大核心 2009年第5期552-558,共7页 Journal of Vibration Engineering
基金 创新团队发展计划资助
关键词 旋转圆柱壳 非线性 振型进动 响应 rotating circular cylindrical shell nonlinear precession of vibrating shape response
  • 相关文献

参考文献10

  • 1Bryan G H. On the beats in the vibration of a revolving cylinder on bell [J]. Proc. Roy. Soc. London, 1890, 47: 101--111.
  • 2樊尚春,刘广玉,王振均.轴对称壳谐振子振型的进动研究[J].仪器仪表学报,1990,11(2):153-159. 被引量:9
  • 3李永强,郭星辉,刘杰.圆柱壳振型进动的研究[J].振动与冲击,2002,21(3):61-62. 被引量:2
  • 4Nayfen A H. Nonlinear oscillations of circular cylindrical shells[J]. Internation Journal of Solids Structures, 1987, 23:1 625-1 638.
  • 5Amabili M. A comparison of shell theories for largeamplitude vibrations of circular cylindrical shells: Lagrangian approach[J]. Journal of Sound and Vibration, 2003, 264:1 091--1 125.
  • 6Roth R S, Klosner T M. Nonlinear response of cylindrical shells subjected to dynamic axial loads [J]. AIAA Journal, 1964, 2:1 788--1 794.
  • 7Pellicano F, Amabili M, Paidoussisc M P. Effect of the geometry on the non-linear vibration of circular cylindrical shells [ J]. International Journal of Nonlinear Mechanics, 2002, 37:1 181-1 198.
  • 8Lee Young-Shin, Kim Young-Wann. Nonlinear free vibration analysis of rotating hybrid cylindrical shells [J]. Computers & Structures, 1999,70 : 161-168.
  • 9李红影.几何非线性对旋转圆柱壳振型进动的影响[D].沈阳:东北大学,2006.
  • 10Rene van dooren. Combination tones of summed type in a non-linear damped vibratory system with two degrees of freedom[ J ] International Journal of Nonlinear Mechanics, 1971, 6:237--254.

二级参考文献5

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部