期刊文献+

黄芩苷的晶体结构研究 被引量:3

Crystal Structure of Baicalin
原文传递
导出
摘要 用乙醇-水溶液体系从黄芩中提取黄芩苷,纯化得黄芩苷纯度为95.2%.在步长0.0167°,停留时间7.62ms条件下对其粉末进行扫描,获得较高质量粉末衍射谱图.在运用密度泛函方法获得其分子低能量构象基础上,采用直接空间搜索法解析其晶体结构,得该样品属于单斜晶系,P21空间群,晶胞参数为:a=13.02,b=17.22,c=4.49,α=γ=90°,β=95.40°,Z=2,V=1016.13.结合自然键轨道理论分析,表明结构中苷元部分杂环可能具有芳香性.红外振动光谱结果发现,共轭效应导致了羰基伸缩振动频率红移,氢键的存在导致了羟基伸缩振动频率红移.由分子间氢键的影响,预测了其晶体生长特性. Baicalin extracted from scutellaria by ethanol-water system was purified to 95.2%. Optimum resolution data of X-ray powder diffraction for the polycrystal powder were collected from an X'Pert Pro MRD diffractometer with scanning conditions of 0.0167° and 7.62 ms per step. On basis of its molecular structure in low energy conformation by density functional theory, the crystal structure was determined by a direct-space approach. The results show that the crystal structure of baicalin belongs to monoclinic, P2 1 space group with unit cell parameters: a= 13.02 A, b= 17.22 A, c=4.49 A, α=γ=90°, β=95.40°, Z=2, V= 1016.1 A^3. Natural bond orbital (NBO) theory analysis of the structure indicates that the heterocyclic ring in the aglycone could be an aromatic ring. The IR result shows that conjugative effect is the reason for the red shift of stretching vibration frequency for carbonyl, meanwhile hydrogen bonds lead to the red shift of stretching vibration frequency for hydroxy groups. The crystal growth characteristic of baicalin was also forecasted by the help of H-bond analysis.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2009年第20期2363-2367,共5页 Acta Chimica Sinica
关键词 黄芩苷 结构 粉末衍射 密度泛函 红外光谱 baicalin structure X-ray powder diffraction density functional theory IR spectrum
  • 相关文献

参考文献1

共引文献6

同被引文献41

  • 1屈凌波,梁瑞玲,程森祥.苄基哌嗪衍生物的量子化学计算和^(13)C NMR化学位移相关性研究[J].郑州轻工业学院学报(自然科学版),2006,21(2):6-9. 被引量:2
  • 2郑安民,邓风.量化计算在预测NMR参数和固体催化剂酸性中的应用[J].波谱学杂志,2006,23(4):543-544. 被引量:1
  • 3Tremayne M. The impact of powder diffraction on the struc- tural characterization of organic crystalline materials [ J ]. Phil Trans R Soc Lond A,2004,362:2691 - 2707.
  • 4Harris K D M, Tremayne M, Kariuki B M. Contemporary ad- vances in the use of powder X-ray diffraction for structure determination[ J]. Angew Chem Int Ed,2001,40: 1626 -1651.
  • 5David W I F, Shankland K. Structure determination from powder diffraction data [ J ]. Acta Cryst A, 2008,64:52 - 64.
  • 6David W I F, Shankland K, McCusker L B, et al. Structure determination from powder diffraction data [ M ]. New York : Oxford University Press,2006 : 1 - 12.
  • 7Hibbs D E, Overgaard J, Gaul C, et al. The electron density in flavones I. Baicalein[ J].New J Chem,2003,27:1392 - 1398.
  • 8Frisch M J,Trucks G W, Schlegel H B, et al. Gaussian 03, Revision B. 03 [ R]. Gaussian Inc. ,Pittsburgh PA,2003.
  • 9Sehreckenbach G, Ziegler T. Calculation of the G-tensor of e- lectron paramagnetic resonance spectroscopy using gauge-in- cluding atomic orbitals and density functional theory [ J ]. J Phys Chem, 1997,101:3388 - 3399.
  • 10Boultif A, Lou:r D. Powder pattern indexing with the dichot- omy method[J]. J Appl Crystallogr, 2004,37:724 -731.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部