期刊文献+

基于多尺度特征点识别与局部谱特征的离散数据匹配 被引量:1

Multi-scale feature points detection and local region spectral descriptor for matching unorganized points data
下载PDF
导出
摘要 为了实现部分重叠且不同视角的测量数据配准,提出多尺度特征点检测算法,可以从大量的原始数据中提取少量特征点。该算法包括离散曲率计算、双边滤波和特征点计算等步骤,特征点个数可以由尺度参数粗略控制。提出局部形状谱描述器来描述每个特征点的局部形状特性,首先利用局域点的距离和曲率信息构造关系矩阵,然后通过计算关系矩阵的特征值来构造谱描述器,利用该描述器可以方便地计算不同点集中各个特征点的对应关系,进而实现两个数据点集的配准。通过实例验证了该算法有较好的抗噪性和运行速度。 In order to align partly overlapped data clouds measured from different view points, a multi-scale feature points detection algorithm was proposed. A few feature points can be extracted from large number of original data quickly. This algorithm consists of three steps: discrete curvature computing, bilateral filtering and feature points detecting. The number of feature points can be controlled by scale parameter approximately. For each feature point, the authors proposed local shape spectral descriptor to identify its local shape characteristic. Firstly, an affinity matrix was constructed using distance and curvature information of points in neighborhood of a feature point, and then a few of eigenvalues of affinity matrix were used to form a shape descriptor, with which the correspondence between different data sets can be computed easily. Some examples prove that the method is robust and efficient for aligning large number of data with noise.
出处 《计算机应用》 CSCD 北大核心 2009年第11期3011-3014,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60863012) 江西省自然科学基金资助项目(0611063) 江西省教育厅科技资助项目(GJJ08435 GJJ09346)
关键词 多尺度 谱描述器 特征点 数据配准 离散数据 multi-scale spectral descriptor feature point data matching discrete data
  • 相关文献

参考文献20

  • 1CHEN C-S, HUNG Y-P, CHENG J-B. RANSAC-based DARCES: A new approach to fast automatic registration of partially overlapping range images [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(11) : 1229 - 1234.
  • 2AIGER D, MITRA N J, COHEN-OR D. 4-points congruent sets for robust pairwise surface registration [ J]. ACM Transactions on Graphics, 2008, 27(3): 85.
  • 3LAGA H, TAKAHASHI H, NAKAJIMA M. Spherical wavelet descriptors for content-based 3D model retrieval [ C]// SMI 2006: IEEE International Conference on Shape Modeling and Applications. Washington, DC: IEEE Press. 2006:15-25.
  • 4HEBERT M, IKEUCHI K, DELINGETI'E H. A spherical representation for recognition of free-form surfaces [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(7) : 681 - 690.
  • 5JOHNSON A E, HEBERT M. Surface registration by matching oriented points [ C]//Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling. Washington, DC: IEEE Computer Society, 1997:121 - 125.
  • 6CASTELLANI U, CRISTANt M, FANTONI S, et al. Sparse points matching by combining 3D mesh saliency with statistical descriptors [ J]. Computer Graphics Forum, 2008, 27(2) : 643 - 652.
  • 7LEE C H, VARSHNEY A, JACOBS D W. Mesh saliency [ C]// Proceedings of ACM SIGGRAPH 2005. New York: ACM Press, 2005 : 659 - 666.
  • 8LIU YU-SHEN, LIU MIN, KIHARA D, et al. Salient critical points for meshes [ C]//Proceedings of the 2007 ACM Symposium on Solid and Physical Modeling. New York: ACM Press, 2007:277 -282.
  • 9ZOU GUANG-YU, HUA JING, DONG MING, et al. Surface matching with salient key points in geodesic scale space [ J/OL]. Computer Animation And Virtual Worlds, 2008, 19:399 -410 [2009 -02 - 15]. http://www, es. wayne, edu/- jinghua/publication/ 2008-cavw-surface-matching. pdf.
  • 10LI XIN-JU, GUSKOV I. Multi-scale features for approximate alignment of point-based surfaces [ C]// Proceedings of the third Eurographics Symposium on Geometry Processing. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2005: 217.

同被引文献14

  • 1张国雄.坐标测量技术发展方向[J].红外与激光工程,2008,37(S1):1-5. 被引量:39
  • 2朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 3Ye X Z L iu H Z, Chen L , et a l Reverse innovative design - anintegrated product design m ethodology[J]. Conqjuter- AidedDesign, 2008,40(7): 812-827.
  • 4Baibero B R. The recovery o f design intent in reverseengmeering problems[J]* Computers & Industrial Engineering,2009,56(4):1265-1275.
  • 5Mahmud M , Joannic D, Roy M , et al. 3D part inspection pathplanning o f a laser scanner w ith control on the uncertainty[J].Computer-Aided Design, 2011,43(4): 345-355.
  • 6Besl P J, M ckay N D. A method fo r registration o f 3-Dshapes[J]. IEEE Transactions on Pattern Analysis and MachineIntelligence,1992,14(2): 239-256.
  • 7Rusmkiewiez S, Levoy M . E fficient variants o f the ICPalgorithm [C]//Proceedings o f the 3rd International Conferenceon 3D D ig ita l Im aging and Modeling Los Alam itos: IEEEComputer Society Press, 2001:145-152.
  • 8Senin N , Colosimo B M , Pacella M . Point set augmentationthrough fittin g fo r enhanced ICP registration o f point clouds inm ultisensor coordinate m etrology[J]. Robotics and Computer-Integrated M anufacturing, 2013,29(1): 39-52.
  • 9Sharp G C,Lee S W ,Wehe D K , ICP registration usinginvariant features[J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2002,24(1):90-102.
  • 10Lowe D G.. Distinctive image features from scale-invariantkeypoints[J]. International Journal of Computer Vision, 2004,60(2): 91-110.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部