期刊文献+

基于局部空间数据的功能磁共振图像运动校正

Local motion correction for functional magnetic resonance images
下载PDF
导出
摘要 在脑功能磁共振实验中,运动校正是数据预处理的关键环节。运动校正的结果对后续的脑区定位、功能连接等分析有着重要的影响。但因数据量较大,常规分析软件对实验数据进行运动校正时做了一些简化处理,校正误差较大。为减少这种误差,提出了一种基于局部空间数据的运动校正方法,首先从数据获取的角度构造功能像各切片的局部空间数据,然后利用修正的Gauss-Newton最优化方法估计各切片相对于参考图像做刚体变换后的空间位置,最后利用Delaunay三角剖分方法重构功能像以实现精确校正。仿真实验及实际的视觉实验数据分析结果表明,该方法具有较高的校正精度,是一种有效的功能磁共振数据运动校正方法。 In brain functional Magnetic Resonance Imaging (fMRI) experiment, motion correction is an important step in data preprocessing. Results of motion correction affect the follow up analysis such as detecting the functional activation area and functional connectivity. There are some simplified hypotheses for head motion in the common analysis software packages. Due to large volume of data, the correction error is also large. In order to reduce the correction error, a novel motion correction method was proposed based on local rigid transform. This method first used adjacent weighted slices to construct local volumetric data for each slice in a multi-slice echo planar imaging volume data, and then estimated the space position of each slice by the registration of local volumetric data using the modified Gauss-Newton optimization algorithm. Finally the image stack was re-liced using Delannay triangulation method. Results of implementation based on this method during phantom data and human vision experiments reveal that it is effective to reduce the correction error, which leads to accurate realignment.
出处 《计算机应用》 CSCD 北大核心 2009年第11期3018-3020,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60475021)
关键词 功能磁共振成像 运动校正 刚体变换 functional Magnetic Resonance Imaging (fMRI) motion correction rigid transformation
  • 相关文献

参考文献11

  • 1BANDETFINI P. Functional MRI today [ J]. International Journal of Psychophysiology, 2007, 63(2) : 138 - 145.
  • 2LOGOTHETIS N K. What we can do and what we cannot do with fMRI [J]. Nature, 2008, 453(7197): 869-878.
  • 3OAKES T R, JOHNSTONE T, WALSH K S O. Comparison of fMR1 motion correction software tools [ J]. NeuroImage, 2005, 28 (3) : 529 - 543.
  • 4JONES T B, BANDETTINI P A, BIRN R M. Integration of motion correction and physiological noise regression in fMRI [ J]. Neurohnage, 2008, 42(2): 582-590.
  • 5YEO D T B, FESSLER J A, KIM B. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging [ J]. Magnetic Resonance in Medicine, 2008, 26(5): 703 -714.
  • 6BANNISTER P R, BRADY J M, JENKINSON M. Integrating temporal information with a non-rigid method of motion correction for functional magnetic resonance images [ J]. Image and Vision Computing, 2007, 25(3): 311-320.
  • 7FRISTON K J, ASHBURNER J, FRITH C D, et al. Spatial registration and normalization of images [ J]. Human Brain Mapping, 1995, 3(3): 165-189.
  • 8COX R W, JESMANOWICZ A. Real-time 3D image registration for functional MRI [ J]. Magnetic Resonance in Medicine, 1999, 42 (6): 1014-1018.
  • 9YAMASHITA N, FUKUSHIMA M. Modified Newton methods for solving a semismooth reformulation of monotone complementarity problems [J]. Mathematical Programming: Series A and B, 1997, 76(3) : 469 -491.
  • 10MAES F, COLLIGNON A, VANDERMEULEN D, et al. Multimodality image registration by maximization of mutual information [ J]. IEEE Transactions on Medical Imaging, 1997, 16(2) : 187 - 198.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部