期刊文献+

自动选取特征的行人跟踪

Pedestrian tracking with automatic selection of characteristics
下载PDF
导出
摘要 根据非刚性物体运动的特点,提出一种利用支持向量机有效对多目标进行分离并能自动选择目标最明显特性区域的覆盖比算法,克服了以往对选取区域事先进行设定的情形。采用目前常用的加权颜色直方图作为备选粒子,进行行人跟踪。由于建立了合理目标颜色模型,减少了对粒子数量的需求,降低了计算复杂度,有利于实现实时跟踪。利用Bhattacharyya距离描述粒子与目标颜色模型的相似性,作为粒子更新权值的依据。试验结果证明了自动选取被跟踪目标的特征与事先设定备选区域有等价效果。 According to the non-rigid characteristics of the moving target, an algorithm based on Mantle ratio, which can effectively separate multi-target using Support Vector Machine (SVM) and automatically select the largest characteristic region of non-rigid was proposed. It canceled the special requirements of selected regions beforehand. And then the general method of regarding the weighted color histogram as a particle and track pedestrian was adopted, which can reduce the requirement on the number of particles and the computational complexity, so it is helpful to realize the real-time track. Furthermore, the Bhattacharyya distance was employed to estimate the similarity between the color model and the particles, and the distance value was the base of particle update. The experimental results prove the equivalance between automatic selection of characteristics of tracked target and setting the selected regions.
出处 《计算机应用》 CSCD 北大核心 2009年第11期3044-3047,3073,共5页 journal of Computer Applications
基金 广东省教育部产学研结合项目(2006D90704017)
关键词 粒子滤波 覆盖比 支持向量机 加权颜色直方图 BHATTACHARYYA距离 Particle Filter (PF) mantle ratio Support Vector Machine (SVM) weighted color histogram Bhattacharyya distance
  • 相关文献

参考文献15

二级参考文献141

  • 1王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 4[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 5[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 6[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 7[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 8[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 9[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 10[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785

共引文献866

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部