期刊文献+

孤立点用户意义分析在质量管理中的应用 被引量:2

Application of outlier customer meaning analysis in quality management
下载PDF
导出
摘要 现存有关孤立点分析的研究很少解释识别出的孤立点的用户意义,而孤立点通常都包含着重要的信息,在许多应用领域中对于孤立点意义的解释和孤立点本身同等重要。因此,给出孤立点用户意义的定义,并提出一种基于距离和的孤立点用户意义分析算法(DSCM),对每一孤立点给出相应的解释,以帮助用户更好地理解孤立数据。应用到质量管理中的结果表明,该算法是有效的和实用的,且易用性较强。 The customer meaning for outlier explanation is rarely provided in the current studies. The outliers usually contain important information, and for many applications, the explanations are as important to the user as the outliers. A new definition of outlier customer meaning was given, and a new outlier customer meaning analysis algorithm named DSCM was put forward based on distance sum. The algorithm gave an explanation of every outlier, which improved the user's understanding of the data. Then the algorithm was applied to quality management, and the results show that the algorithm is effective and practical, and more easy to use.
出处 《计算机应用》 CSCD 北大核心 2009年第11期3077-3079,共3页 journal of Computer Applications
基金 重庆市科技攻关资金资助项目(CSTC 2009AB2049 CSTC 2009AC2068)
关键词 孤立点 用户意义 距离和 质量管理 数据挖掘 outlier customer meaning distance sum quality management data mining
  • 相关文献

参考文献7

  • 1黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 2KNORR E M, NG R T. Algorithms for mining distance-based outliers in large datasets [ C]// Proceedings of the 24rd International Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann, 1998:392-403.
  • 3JIANG SHENG-YI, LI QINGH-HA, LI KEN-H, et al. GLOF: A new approach for mining local outlier [ C]//2003 International Conference on Machine Learning and Cybernetics. Washington, DC: IEEE Press, 2003, 1:157-162.
  • 4KNORR E M, NG R T, TUCAKOV V. Distance-based outliers: Algorithms and applications [ J]. The International Journal on Very Large Data Bases, 2000, 8(3/4): 237-253.
  • 5陆声链,林士敏.基于距离的孤立点检测及其应用[J].计算机与数字工程,2004,32(5):94-97. 被引量:23
  • 6HAN J, KAMBER M. Data mining: Concepts and techniques [ M]. New York: Academic Press, 2001.
  • 7KNORR E, NG R. Finding intensional knowledge of distance-based outliers [ C]//Proceedings of the 25th Intematianal Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann, 1999: 211-222.

二级参考文献22

  • 1Zheng Binxiang,Du Xiuhua & Xi Yugeng Institute of Automation, Shanghai Jiaotong University,Shanghai 200030,P.R.China.Outliers Mining in Time Series Data Sets[J].Journal of Systems Engineering and Electronics,2002,13(1):93-97. 被引量:3
  • 2范大昭,雷蓉,张永生.从地理数据库中探测奇异值[J].测绘科学,2004,29(5):12-15. 被引量:2
  • 3陆声链,林士敏.基于距离的孤立点检测及其应用[J].计算机与数字工程,2004,32(5):94-97. 被引量:23
  • 4K.Yamanishi and J.Takeuchi,A Unifying Framework for Detecting Outliers and ChangePoints from Non-Stationary Time Series Data,SIGKDD'02 Edmonton,Alberta,Canda,2002.
  • 5E.M.Knorr,R.T.Ng and V.Tucakov,Distance-Based Outliers:Algorithms and Applications,VLDB Journal:VeryLarge Databases,2000:237-253.
  • 6J.LauriKKala,M.Juhola and E.Kentala,Informal Identification of Outliers in Medical Data,5th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology,(IDAMAP-2000).
  • 7S.D.Bay,M.Schwabacher,Mining Distance-Based Outliers in Near Linear Time with Randomization and a Simple Pruning Rule,SIGKDD'03,Washington,DC,USA,2003.
  • 8S.Ramaswamy,R.Rastogi and K.Shim,Efficient Algorithms for Mining Outliers from Large Data Sets,InProceedings of the ACM SIGMOD Conference,2000.
  • 9F. Angiulli and C. Pizzuti,Fast Outlier Detection in High Dimensional Spaces,InProccedings of the Sixth European Conferenceon the Principles of Data Mining and Knowledgs Discovery,2002:15-16.
  • 10C.C. Aggarwal and P.S. Yu,Outlier Detection for High Dimensiona Data,In Proceedings of the ACM SIGMOD International Conferenceon Management of data,2001.

共引文献62

同被引文献10

  • 1贾晨科,邱保志.基于局部孤立系数的孤立点挖掘[J].微计算机信息,2005,21(12X):107-109. 被引量:3
  • 2Han Jia-wei, Kamber M. Data Mining.. Concepts and Techniques [M]. Academic Press,2001.
  • 3Ramaswamy S, Rastogi R, Shim K. Efficient Algorithms for Mining Outliers from Large Data Sets[C]//Proc of the ACM SIGMOD International Conference on Management of Data. [S. 1. ]: ACM Press, 2000.
  • 4Knorr E, Ng R. Finding Intensional Knowledge of Distance based Outliers[C]//Proc. of the 25th VLDB Conference. Scotland: Edinburgh, 1999 : 211-222.
  • 5Chen Z,Tang J, Fu A. Modeling and efficient mining of intentional knowledge of outliers[C]//Proc of the 7th lnt'l Database Engineering and Applications Symposium. I.os Alamitos, CA: IEEE Computer Society Press, 2003 : 1-10.
  • 6Papadimitriou S,Kitagawa H, Gibbons P B. IXDCI: Fast outlier detection using the local correlation integral[C]//Proc, of the 19th Int' 1 Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society Press, 2003 : 315-326.
  • 7Angiulli F, Basta S,Pizzuti C. Distance-Based Detection and Prediction of Outliers[J]. IEEE Transactions on Knowledge and Data Engineering,2006,18(2):145-160.
  • 8陈丽娜.孤立点挖掘研究[J].内江科技,2009,30(3):198-199. 被引量:1
  • 9朱政,刘侃.孤立点分析在税务审计上的发展运用[J].硅谷,2012(19):113-114. 被引量:1
  • 10高恩阳,刘伟军,王天然.一种基于线性规划的孤立点检测方法[J].控制工程,2013,20(6):1123-1126. 被引量:2

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部